结构有限元分析与优化设计软件系统

JIFEX

用户手册之三

有限元分析子系统JFX-FEA

大连理工大学工程力学系

工业装备结构分析国家重点实验室

2007年7月

1	概述	1
2	程序安装和运行操作 2.1 程序安装 2.2 程序运行操作	4 4 4
3	 有限元模型描述	6 6 7 7
4	有限元分析数据格式—Universal 文件格式 4.1 总则 4.2 输入数据块结构 4.3 单位制问题	15 15 16 18
5	有限元分析数据格式说明 5.1 节点数据 5.2 单元数据 5.3 单元的材料性质数据 5.4 单元属性数据块 5.5 附加性质数据块 5.5 附加性质数据块 5.6 约束集数据 5.7 相对坐标系数据 5.8 荷载模式描述数据 5.9 节点附加质量数据块 5.10 热传导分析数据块	20 21 30 33 38 40 41 42 46 47
6	控制数据格式说明	49
7	静力分析 7.1 静力分析功能 7.2 静力分析数据格式 7.3 静力分析算例	52 52 52 52
8	自振分析	57 57

	8.2 自振分析数据文件格式	57
	8.3 自振分析算例	58
9	屈曲分析	63
	9.1 屈曲分析功能	63
	9.2 屈曲分析数据格式	63
	9.3 屈曲分析算例	63
10	结构频率响应分析	70
	10.1 结构频率响应分析功能	70
	10.2 结构频率响应分析数据文件格式	70
	10.3 结构频率响应算例	74
11	结构时程响应分析	83
	11.1 结构时程响应分析切能	83
	11.2 结构时程响应分析数据又件格式	83
	11.3 结构时程响应算例	85
12	轴对称结构分析	91
13	地震响应分析	92
14	温度场和热传导分析	93
15	分析结果图形数据格式	95
16	出错信息	101
索	引	103

1 概述

JIFEX 是一个通用性的结构有限元分析与优化设计软件,是大连理工大学工程力学系/ 工业装备结构分析国家重点实验室研制开发的新一代有限元集成化软件系统。它在 MS WINDOWS98/NT/2000/XP 和 AutoCAD 平台上将有限元计算与前后置处理集成一体,具有 全新的图形交互式用户界面,实现了全自动的模型数据生成和计算可视化。

JIFEX 系统由有限元建模子系统 AutoFEM、有限元结构分析子系统 JFX-FEA 和优化 设计子系统 JFX-OPT 以及图形后处理子系统 GRAFEA 等子系统组成。

JIFEX 的有限元建模系统 AutoFEM 以 AutoCAD(R14)为应用平台。AutoFEM 的主要 功能包括: (1)交互构造面向有限元的几何模型; (2)将有限元几何模型离散化,生成有限元 网格; (3)交互生成有限元计算模型的属性数据,包括材料特性、梁截面特性、外部载荷和 边界约束条件等; (4)有限元模型的编辑与修改; (5)有限元模型的显示与查询; (6)建立有限 元模型公共数据库(规格化数据文件),通过转换程序生成有限元分析软件前端输入数据。

JIFEX 的计算可视化功能由图形后处理子系统 GRAFEA 实现。由于采用了 QT 以及 OpenGL 进行编制, GRAFEA 具有了良好的跨平台性能,其特点为: (1)在不同操作系 统中均可正常运行并具有一致的标准 MS Window 应用程序界面,操作简便快捷。(2)充 分发挥图形硬件的性能,可以进行大规模的图形处理,其规模只受系统的内存以及硬盘空 间的限制。(3)具有各种有限元图形处理功能,如网格图形、消隐图形、等值线图形、 彩色云图、振型图等。对所有的图形均可方便地进行各种几何变换。(4)具有光照模 型、剖切、体绘制等高级功能,可以生成高质量的图形,在各种系统中均可打印出高质量 的图形。

JIFEX 的结构分析子系统 JFX-FEA 的前身是七十年代我国自行研制开发的第一个大型 结构有限元分析通用程序系统 JIGFEX,该程序曾在只有 48K 字内存的国产 TQ—16 机上 成功地完成了高层建筑、海洋平台、机车车辆、直线粒子加速器、气垫船等大型工程结构 的分析计算,受到工程界的广泛好评,于 1981 年通过了教育部组织的技术鉴定。二十几 年来以 JIGFEX 为基础先后开发了通用性的微机有限元分析软件 DDJ-W、计算机辅助结构 优化设计软件 MCADS、32 位工作站有限元集成软件系统 INSAS,以及面向工程的若干专 用软件系统,如导管架海洋平台设计分析程序系统 DASOS-J、高层建筑结构分析程序系统 DASTAB、近海混凝土平台分析设计程序系统 ADSOCS、结构非线性分析程序系统 NAS— JIGFEX、重点机械产品 CAD 结构分析程序 IJFX 等。这些软件曾经在许多工业部门推广应 用,解决了许多重要工程结构设计计算问题,在我国的有限元技术及其软件系统的发展与 应用中发挥了重要作用。JIFEX 软件家族也在大量的程序开发和工程应用中得到了不断的 考核、扩充和完善。

JIFEX 集成了上述这些软件的功能进一步发展,并被列为"八五"国家重点科技攻关项目,1995 年在国家科委组织的"第二次全国自主版权 CAD 支撑软件评测"中获得有限元软件类唯一的一等奖,1998 年获国家 863 计划支持。JIFEX 软件适用于各种工程结构、工业装备和机电产品的强度、刚度、稳定性、动力响应、热传导、三维多体接触、弹塑性、屈曲稳定性等力学性能的分析计算以及结构性能的优化设计,其应用范围覆盖了航空、航天、机械、车辆、船舶、海洋工程、土木、建筑、水利、电子、轻工、电力、石化等各个工业领域,是现代工业设计和高新技术开发的强有力的软件工具,是工程分析与优化设计的得力助手。

JIFEX 软件结构有限元分析子系统 JFX-FEA 的主要功能有:

- 静力分析。包括热应力计算、轴对称结构和复合材料结构分析。
- 动力分析。包括固有模态、频率响应、时程响应。
- 屈曲稳定性分析。适用于杆、梁、板壳、复合材料板壳的组合结构。
- 热传导分析。稳态与瞬态热传导、三类边界条件的温度场计算。
- 接触分析。包括有摩擦、三维接触、多体接触、弹塑性接触计算。
- 弹塑性分析。适用于二维平面和三维块体以及杆单元组成的结构。

结构模型化功能。具有各种类型单元和多种荷载类型以模拟各种复杂结构及其受载,在保证计算精度的同时可灵活方便地处理斜向支撑、节点位移从属关系、节点指定位移等特殊的约束条件,满足了对复杂工程结构进行模型化的要求。

 多层子结构功能。可以简化有限元建模、提高计算速度、方便局部非线性和接触 分析。

JIFEX 软件结构优化设计子系统 JFX-OPT 的主要功能有:

- 梁、杆、膜、板、壳、块体、轴对称体单元组合结构的单元优化设计。
- 结构的边界形状优化设计和构件布局优化设计。
- 复合材料层合板与夹层板结构的铺层优化设计。
- 结构静态特性和动态特性优化、以及两者的耦合优化设计。
- 结构的整体屈曲稳定性优化设计。

多种目标的优化设计:减轻结构重量、降低应力水平、提高结构的刚度或柔性、
 改善结构固有振动频率分布、提高结构的失稳临界载荷。

• 人机交互式设计功能和灵活扩充优化设计功能的用户编程接口技术。

• 结构性态对设计变量的灵敏度(即一阶导数)计算。

JIFEX 系统的软硬件环境:

JIFEX 软件全部由标准 C 语言编程,所有源程序可以在微机、各类工作站以及大型计算机编译运行。JIFEX 软件系统微机版本的硬件平台是各类 Pentium 系列微机,要求微机 具有 *128MB* 内存和至少 *10.0G* 的硬盘,并且随着解题规模的增加,对内存和外存的要求 也相应增加。JIFEX 系统的软件平台是 MS WINDOWS/98/NT/2000/XP 操作系统。JFX-FEA 子系统运行需要外存的容量主要取决于计算问题规模及采用的结构分析模型。

JIFEX 软件系统经过了长期的应用考核,尤其是近几年完成了一批大型复杂工程结构的有限元分析和优化设计,涉及航空、航天、机械、土木、能源、铁路等领域,验证了软件的可靠性和实用性,显示了软件的功能水平和应用价值,在常用的分析功能、计算精度及实用性方面大体与国外同类软件相当,同时在某些方面具有自己的特色,如大型组合结构屈曲稳定性计算、多功能实用化的结构优化设计、微机上的大规模计算能力、与AutoCAD 集成的有限元建模、MS WINDOWS/98/NT/2000/XP 平台上的图形交互环境和视算一体化等。

2 程序安装和运行操作

2.1 程序安装

在 JIFEX 系统安装后,结构分析子系统程序 JFX-FEA 已被装入安装路径中的子目录下。有关 JIFEX 系统安装的方法,参见 JIFEX 系统操作和前后处理手册。

2.2 程序运行操作

JFX-FEA 系统的运行过程如下:

 在集成环境下,用户只需在任务选择菜单中调用结构分析功能的子菜单,JFX-FEA 程 序将自动运行。程序运行时的输出信息将在集成环境的窗口中输出。JFX_FEA 程序运 行后首先在窗口中显示如下信息:

● JFX-FEA 程序运行过程中,有一些输出信息将显示在窗口中,供用户监视。例如,程 序可能有以下的输出信息:

Nodal TS-data complete

Semi-bandwidth of global stiffness matrix formed! ...

••• •••

在 JFX-FEA 程序运行过程中,可能窗口中会有文字信息提示用户进行交互输入的操 作,用户只需按照屏幕提示进行相应的输入即可。另外,如果计算模型有某些缺陷, 程序在运行过程中也会给出文字形式的警告信息。例如,当平面板壳单元各节点不共 面或有限元模型所施加的约束条件不充足时,程序均会在运行过程中给出警告,提示 单元节点不共面或结构总刚度矩阵病态,在这种情况下,虽然程序仍有可能能继续运 行并可能给出最终结果,但计算结果是不可靠的。 ● JFX_FEA 程序运行结束后,在窗口中将提示程序运行结束,并给出输出文件的路径。 程序还将显示运行总时间,如

Elapsed time= 12 seconds

JFX-FEA 程序运行结束后除了将分析结果以图形数据文件的形式输出外,还将节点位移和单元内力结果分别输出至 displs.res 和 elefrc.res 文件中。对于梁单元,梁截面应力结果输出至 bmstrs.res 中。优化迭代过程的中间结果及最优结果(包括约束条件和设计变量值)输出至 optmed.res 及 optite.res 文件中。

 分析程序运行完毕后,在 JIFEX 主控菜单中选择计算结果图形后处理功能,则可根据 要求显示各项分析结果。有关计算结果显示的交互操作方法,参见 JIFEX 系统操作和 前后处理手册。

3 有限元模型描述

3.1 概述

JIFEX 系统具有较强的有限元建模功能。在对实际问题进行模型简化时,可以通过定 义位移主从关系、位移规格数、相对坐标系等对分析模型进行描述。有限元分析模型包括 节点、单元、单元性质、约束条件、荷载等要素。如果有限元离散模型能较好地模拟真实 结构,则有限元分析具有较高的精度,反之,有限元分析可能具有较大的误差。下面将对 JIFEX 系统中有关有限元模型描述的各方面进行说明。

3.2 有限元模型的网格及单元

有限元方法是一种将连续结构离散为有限自由度的模型后进行分析的一种计算力学方法,因此,将分析对象划分为离散的单元是有限元建模的最关键的步骤。

有限元几何模型的建立是在 JIFEX 系统的前处理子系统完成的,而有限元模型的网格、节点及单元数据通过 Universal 格式的数据文件传送给有限元分析程序。

有限元网格是指由各有限元节点连接而成的单元的总和。一般情况下,不应有孤立的 有限元节点,而且单元是在有限元节点处连接。有限元网格的描述包括对有限元节点坐标 的描述和对单元一节点连接关系的定义。

根据所处理问题的不同,有限元模型需要利用不同的单元类型对分析对象进行模拟。 目前,JIFEX 系统所提供的单元类型有如下各种。,

一维单元, 包括空间弹簧单元、轴力杆单元、空间偏心梁单元、铆钉单元;

二维单元,包括4点平面应力膜单元、4点平面应变膜单元、4点非协调平面应力膜 单元、4点非协调平面应变膜单元、4点矩形膜单元、5点等参平面膜单元、6点等参平面 膜单元、8点等参平面膜单元、3角形薄板单元、3角形薄壳单元、任意四边形壳单元、任 意四边形复合材料夹层板壳单元、三角形复合材料夹层板壳单元、任意四边形复合材料层 合板壳单元、三角形复合材料层合板壳单元、轴对称旋转壳单元;

三维单元,包括8点块体单元、8点非协调块体单元、、任意四边形4节点轴对称环体单元、任意四边形5节点轴对称环体单元、任意四边形6节点轴对称环体单元;

特殊单元, 包括平面接触单元、空间接触单元等。

在数据文件中,单元的种类以单元类型编号 TYPE 进行描述。例如,某单元的类型编号 TYPE=20200,则表示该单元是2点轴力杆单元。

3.3 材料性质、单元属性及单元附加性质数据

有限元分析模型中,除了要在几何上将分析对象划分为离散的单元外,还要定义所有 单元的相关的性质数据。在 JIFEX 系统中,将单元性质数据分为三种,即材料性质数据、 单元属性数据和单元附加性质数据。

JIFEX 系统中,材料性质是指构成单元的材料的力学性质,如杨氏模量、泊松比、质量密度、热力学特性、塑性本构关系相关数据等。在 JIFEX 系统中可以定义两种材料,即各向同性材料和平面正交各向异性材料。

单元属性是指单元的几何尺寸及其他有关数据。例如,对轴力杆单元来说,单元属性 数据包括杆的截面积和截面周长;对各类膜/板/壳单元来说,单元属性数据包括膜/板/壳的 厚度;对梁单元来说,单元属性数据包括梁截面的几何特性数据;对弹簧单元来说,单元 属性数据包括弹簧在各方向的刚度;对复合材料单元来说,单元属性数据包括复合材料各 铺层或夹芯的材料、厚度、铺层方向等;对三维或二维接触单元,单元属性数据包括接触 角、摩擦系数、滑动特性等数据。

单元附加性质是指空间三维梁单元的刚臂性质和梁自然坐标系方向等数据。

各单元的性质数据的定义是通过对各类性质数据的引用实现的。

3.4 边界条件描述

在实际问题中,一个真实的结构总是要受到一定的边界约束条件的,另外,在对结构 进行分析时,有些自由度也是我们所不关心的,因此,在有限元模型的描述中,边界条件 或约束条件的描述是必不可少的。

结构所受的约束条件往往是很复杂的,对这些约束条件能否准确合理地模拟关系到有 限元分析精度的好坏。JIFEX 系统在保证计算精度的同时可灵活方便地处理斜向支撑、节 点位移从属关系、节点指定位移等特殊的约束条件,满足了对复杂工程结构进行模型化的 要求。

JIFEX 系统是通过在相对坐标系下对节点位移规格数进行描述而实现的,同时,还可 以通过定义节点位移间的主从关系来处理不同节点的位移具有依赖关系的情形。以下将分 别对节点位移主从关系、位移规格数和相对坐标系的概念和描述进行简要介绍。

节点位移主从关系

在实际工程中,有些构件的刚度相差很大,也可能存在刚性的构件。在结构计算中, 当很刚性的构件和很柔性的构件放在一起时,会引起结构刚度矩阵的病态。由于我们是用 矩阵位移法求解,刚性构件的刚度阵元素数值很大,而柔性构件刚度阵元素与它相比,只 是一个尾数。从这个角度来看,为了模拟刚体而人为加上去的刚性构件的刚度越大,就越 是损失有效位数。而结构刚度阵病态就越严重,算得就越不准。但是,这些刚性构件的刚 度也不能太小,否则就不能模拟刚体了。

在 JIFEX 系统中,引入了节点位移主从关系的概念来克服以上所述数值计算的困难。 以如图 3.1 所示空间交叉梁系为例。设这个结构中间有一块地方的刚度远较其他杆件的刚 度为大(例如有一个刚度很大的机座等),在图中用斜线表示。现在要计算这个结构的受力 变形状态。对于这个空间杆系,一般来说,每个节点的未知位移的个数是 6 个。刚性块上 与其他杆件相连共有 10 个节点,图中用 ABCDEFGHIJ 来表示。对于这个题目,一个最直 观的处理办法是把这 10 个节点的位移都认为是独立未知数,为了实现其刚性,则在这些 节点相互间用一些刚度远较其余杆件为大的杆件人为地连起来,组成一个新的杆系,然后 进行计算。这个处理方法当然是可行的,但它又显然是有缺点的。按照每个节点 6 个独立 未知位移,这刚性块上 10 个节点就有 60 个独立未知位移;但我们从刚体运动学得知,一 个刚体只有 6 个独立位移。这样来看,有 54 个未知数是多余的。未知数的增加对于总刚 度阵的存储来说是一个很大的负担,况且计算工作量也大大增加了。

图 3.1 空间交叉梁系

既然图 3.1 所示结构中间刚性块只有 6 个独立位移,那么我们可以将刚性块上 10 个节 点中的任意一个,例如节点 A 当作主节点。并使该主节点 A 的 6 个位移全是独立的,而其 余九个节点的共 54 个位移都服从于 A 点的这 6 个位移,这就大大减少了未知数,也防止 了方程的病态。

节点位移的主从关系可以是一部分服从而另一部分不服从。例如图 3.2 所示的二层平 台。

图 3.2 二层平台结构示意图

每一层平台面本身完全可以理想化为一张柔软的刚性膜。说它刚性是指膜平面将始终 保持原来的形状和大小,说它柔软是指膜平面可以在完全不受其自身抵抗的情况下被任意

有限元分析子系统JFX-FEA

地卷曲或折叠。平台面的刚性膜假设,使其在自身平面内的运动成为刚体运动,而平面以 外的运动仍是独立的,就是说图 3.2 中的 B、C、D 三点的 u、v、θ z 受 A 点控制或说服 从 A 点,而其它位移 W、θ x、θ y 仍是独立的。

节点位移之间的主从关系可以是多重的, B 服从 A, C 服从 B 是可以的,从任何一个 从节点去找其主节点,总能找到一个不再服从其它点的主节点。多重主从关系不允许出现 主从递归。多重主从关系的应用要根据需要,一般不可超出三层。

位移规格数

我们将有限元网格的节点看为刚性节点,每一点在空间具有六个自由度 u、v、w、θ x、θy、θz,结构模型上的节点由于联接了不同的单元或者处在不同的位移约束之下,其 位移特征是不同的。我们把位移特征分为五类,分别用代码0,1,2,3,4表示如下:

0: 几何可动位移

1: 独立位移

2: 相关位移

3: 指定零位移

4: 指定非零位移

其中,几何可动位移不是计算时关心的位移,将不列入有限元分析的方程列式中。如膜单 元组成的一平面结构的法向位移是几何可动位移;独立位移是通常意义下有限元分析的待 求未知位移;相关位移是由主从关系确定的位移;指定零位移对应固定的节点自由度,如 受固支约束的节点的 6 个自由度均是指定零位移;指定非零位移对应节点具有指定的位移 分量的情形。

每个节点的六个位移的每一个都可以用以上 5 种代码来描述,我们用 7 个整型数表示 一个节点的位移特征,称为位移规格数,依次表示该节点的相对坐标系 ID 及 u、v、w; θx、θy、θz的位移特征。

例如,图 3.3 所示的平面框架各节点的位移规格数如图所示。O 点 NQ=0, 3, 3, 0, 0, 0, 3,表示 u、v、θ z 为零, w、θ x、θ y 为几何可动位移,A 点 NQ=0, 1, 1, 0, 0, 0, 1,表示 u、v、θ z 为独立位移,w、θ x、θ y 为几何可动位移,B 点 NQ=0, 2, 1, 0, 0, 0, 1,表示 u 是相关位移,用来表示 AB 杆的 EF=∞,C 点 NQ=0, 3, 3, 0, 0, 0, 4,表示 θ z 是指定位移,即支座发生了沉陷(转角沉陷)。

图 3.3 平面框架结构示意图

相对坐标系

在 JIFEX 系统中, 节点坐标用空间直角坐标系 OXYZ 描述, 描述结构节点坐标的坐标 系称为全局坐标系。

参照全局坐标系对节点位移规格数进行描述有时将遇到困难。如图 3.4 所示平面框架 结构 ABC 中节点 C 的位移规格数据,若参照全局坐标系 OXYZ,由于该节点在坐标平面 XOY 内两坐标轴方向上位移分量均不等于零,位移规格数应是 0,1,1,0,0,0,3。这 显然没有能够准确地反映出节点 C 所受到的位移约束情况。如果节点 C 的位移规格数在图 3.4 所示的另一个坐标系 O'X'Y'Z'(假设 ID 为 1)中描述,则仅有沿坐标轴 O'X'方向的 位移是独立的,对节点 C 所受到约束情况的说明变得非常明确,位移规格数是 1,1,3, 0,0,0,3。其中第一个数 1 表示该位移规格数是 ID 为 1 的相对坐标系中描述的坐标系 O'X'Y'Z'就是节点集相对坐系标,参照全局坐标系 OXYZ 可以用一组欧拉角 45.0,0.0,0.0 来描述。至于结构中节点 A 和 B 的位移规格数则仍然参照全局坐标系描述。允许采用相对 坐标,并在相对坐标系里描述节点的位移规格数,使得 45°对称面上的对称边界条件的描 述更方便了。

图 3.4 斜支撑结构示意图

对于相对坐标系的输入只要能说明它和全局坐标系的关系就行了。在理论上这可以由 方向余弦来表示。但这样做由很多重复度,对于数据准备不利,JIFEX 程序规定用以下三 种方式输入相对坐标系:

用三个实数欧拉角(ψ , θ , φ)决定相对坐标系

采用这种方法需要由用户输入进动角 ψ ,章动角 θ ,自转角 φ 。确定这些角度的方法 可以参见理论力学教程中有关段落。从刚体运动的观点来看,任意一个相对坐标系 X'Y'Z',都可以由结构坐标系 XYZ 依次通过最多三次旋转而得到。三个欧拉角定义如 下:从结构坐标系 XYZ出发,绕Z轴旋转 ψ 角即进动角得到 $L\eta$ Z坐标系,然后再绕L轴 转动 θ 角即章动角得到 $L\eta'Z'$ 坐标系,最后再绕 Z'轴旋转 φ 角即自转角得到相对坐标系 X'Y'Z'。这样如果给出了对于结构坐标系描述的一个相对坐标系的三个欧拉角,那么就完 全确定了这个相对坐标系。这里,角度的单位是度。

用结构上的三个整数节点号(I,J,K)来决定相对坐标系

这是一种利用三个点决定一个平面的办法。这三个节点必须不在一条直线上。设这三 个节点依次为 I,J,K。根据这三个节点决定的相对坐标系的 X'方向为自 I 至 J 的方向; Y'方 向在 IJK 平面内,且保证 $Y'_k > 0$ (Y'_k 为 K 点在该坐标系的 Y'坐标值), Z'的方向则依右 手坐标系的规则确定。

用三个实数 (ψ , θ , φ) 以 1-2-3 旋转方式决定相对坐标系

为和其他有限元分析前处理程序进行数据接口,JIFEX 系统允许以 1-2-3 旋转方式对相 对坐标系进行描述,即以三个角度 ψ , θ , φ 描述相对坐标系。这三个角度的定义如下:从结 构坐标系 XYZ 出发,绕 X 轴旋转 ψ 角得到 XL η 坐标系,然后再绕 L 轴转动 θ 角得到 $\eta'LZ'$ 坐标系,最后再绕 Z'轴旋转 φ 角得到相对坐标系 X'Y'Z'。 通过给出这三个角度, 那么就完全确定了这个相对坐标系。同样,这里角度的单位是度。

3.5 结构荷载描述一荷载模式与荷载工况

一个结构在工作时要受到各种外荷载的作用,结构分析往往要找出几个典型荷载进行 分析,以确定结构的承载能力。JIFEX 系统引入荷载模式和荷载工况的概念来进行结构荷 载的定义。

以图 3.5 所示的梁为例,假设要计算的是一个简支梁在图 3.5 中左图所示的四种荷载 作用下的应力。可以发现,这四种荷载可由两种更为基本的荷载的线性组合来表示。这两 种荷载如图 3.5 中右上方所示,我们可分别称为荷载模式 1 和荷载模式 2。所谓荷载模 式,是指一种荷载模型,它只有在被调用后才成为真正的荷载。要分析的四种荷载可称为 荷载工况,它们可由两个荷载模式按不同的调用系数进行线性组合来表示。这就是荷载模 式和荷载工况的基本概念。

在 JIFEX 系统中,每一荷载模式中允许包含不同类型的荷载。例如,在一个荷载模式 中,可以同时存在节点荷载、重力荷载、面荷载、梁的四元荷载等形式的荷载。

图 3.5 荷载模式和荷载工况

4 有限元分析数据格式一Universal 文件格式

4.1 总则

JIEFX 系统有限元分析数据格式称为 Universal File Format,采用该格式填写的数据文件称为 Universal 文件。Universal 文件采用自由格式,在结构上支持块(Block)和记录(Record),词法上支持关键字(Keyword)以及多种数据类型。

1. 词法符号

词法符号是文件的最小单位,它们分别是:关键字、分隔符、数据。

a.关键字(大小写不敏感):

header node coordsys

material additionprop geometryprop

element load loadset group groupset

constraint constraintset control controlset

function nodemass

b.分隔符:

块分隔符: { }

记录分隔符:()

字段分隔符: 空格 回车符

c.数据:包括字符串、整数、实数。

i).字符串:以"XXX" 表示,最大长度为 255 字节。

ii).整数:均为长整数(long),范围: -2,147,483,648 到 2,147,483,647。

iii).实数:均为双精度型(double),范围: -1.7E +/-308 到 1.7E +/-308, 15 位有效数字。

2. Universal 文件的组织。

Universal 文件按数据块和记录来组织。

Universal 文件的数据块结构如下:

有限元分析子系统JFX-FEA

{ 块类型 块内容 }

其中:数据块类型为关键字,块内容由记录和子块组成。

Universal 文件的记录结构如下:

(多个字段)

其中:每个字段代表一数据,字段之间以字段分隔符分割.

Universal 文件第一个数据块必须为 header 块。

注释采用 C 语言风格, 即:

/*注释*/

//注释

4.2 输入数据块结构

1、 文件头数据块(关键字: header):

记录	字段	描述	类型
	Title 数据库标题		字符串
1	Version	文件格式版本号	实型数
	Туре	文件类型	整型数

2、 组数据块(关键字: group)

记录	字段	描述	类型
1	NG	组总数	整型数
1~NG	GroupBlock	组子块	

GroupBlock: (Kewword: Groupset)

记录	字段		字段 描述	
	ID		组 ID	整型数
	De	escription	组描述	字符串
		Туре	组类型(目前填0,表示单 元;填1,表示节点)	整型数
1	1	NI	数据项总数,限定小于 5000	整型数
	1~NI	Туреі	数据项类型(目前填 0,表 示单元;填 1,表示节点)	整型数
	1 111	EntityIDi	实体标识	整型数

3、函数数据块(关键字: Function)

记录	字段		描述	类型
1	NF		函数总数	整型数
	ID		函数 ID①	整型数
	Description		函数描述	字符串
	Туре		函数类型	整型数
1~NF	NI		数据项总数	整型数
		ITIDi	数据项 ID	整型数
	1~NI	Xi	函数的 X 分量	实型数
		Yi	函数的 Y 分量	实型数

4.3 单位制问题

本系统在建模时强烈建议所有数据使用国际单位制,即千克-米-秒制。在国际单位制 中,质量单位为千克,长度单位为米,时间单位为秒,除三个基本物理量之外的其它物理 量(如荷载、质量密度、杨氏模量等)的单位根据这三个基本单位导出。如果未按国际单 位制进行数据输入,则程序运算结果在某些情况下可能无法直接解释,此时,**用户应考虑 到有限元分析和优化设计程序是按照无量纲量进行计算这一事实对运算结果给出相应解 释。**另外,采用不统一的单位制(如定义杨氏模量时力的单位制为"千牛",而定义荷载 时力的单位制为"牛顿"),是一危险性较大的做法,应严格避免。

用户应特别注意到,在国际单位制体系中,力的单位(牛顿)是一导出单位制,其单 位应满足如下关系

力的单位=质量单位*长度单位/时间单位2

因此,在国际单位制中,材料的杨氏模量和荷载中力的单位应按照牛顿/平方米填写。特别 是在动力分析(如自振分析、振动响应分析等)中,如果质量单位和力的单位未满足上述 关系,则有限元分析程序直接按照无量纲计算的自振频率结果将是不正确的。

尽管这里并不推荐使用其他单位制,但 JIFEX 系统提供一种机制,使得用户在特殊需要时也可以采用非国际单位制。具体来讲,就是用户可以通过定义一个单位制转换常数 g,来保证程序仍能得到正确的自振频率结果。这一参数根据用户定义的单位制按照下式 计算:

例如,在结构自振分析中,如果用户定义数据时的质量单位为千克,长度单位为 米,时间单位为秒,但力的单位并未与基本单位统一而是采用了千克力的单位,则用户可 定义 g=9.81 并将此参数作为输入数据填写在自振分析控制数据中。同理,如果用户定义数 据时的质量单位为千克,长度单位为毫米,时间单位为秒,力的单位为牛顿,则用户应定 义 g=1000.0。

为满足特殊的工程问题的需要,这里给出采用几种典型的非国际单位制时各物理量 的单位制及自振分析时单位制转换常数g的选取。

	国际单位制(推荐)	千克-毫米-秒制	克-毫米-秒制	千克-米-秒制,但力 的单位为千克力
几何尺寸	*	毫米	毫米	*
质量密度	千克/立方米	千克/立方毫米	克/立方毫米	千克/立方米
杨氏模量	牛顿/平方米	牛顿/平方毫米	牛顿/平方毫米	千克力/平方米
集中力荷载	牛顿	牛顿	牛顿	千克力
分布力荷载	牛顿/平方米	牛顿/平方毫米	牛顿/平方毫米	千克力/平方米
弯矩荷载	牛顿*米	牛顿*毫米	牛顿*毫米	千克力*米
单位制转换常数 g	1.0	1000.0	1000000.0	9.8
位移结果	*	毫米	毫米	*
应力结果	牛顿/平方米	牛顿/平方毫米	牛顿/平方毫米	千克力/平方米

再次重申,尽管上表给出采用非国际单位制时各物理量的单位制选取,但选择非国际 单位制尤其是不统一的单位制是一应尽量避免的做法。

5 有限元分析数据格式说明

5.1 节点数据

节点数据块关键字为 node,用于对结构的所有节点坐标及节点属性进行描述。 该数据块格式为:

记录	字段	描述	类型
1	NW	节点总数	整型数
	ID	节点标识	整型数
	Х	X坐标	实型数
1~NW	Y	Y坐标	实型数
	Z	Z 坐标	实型数
	Attrib	节点属性	整型数

其中,如果没有主从关系或指定位移,则主节点号和各向位移相关数据也需填充任意 实数。

上表中部分数据意义如下:

X,Y,Z ——节点在全局坐标系中的坐标值;

注: 对于轴对称旋转壳单元组成的结构, X 表示节点径向坐标值, Y 表示由该点处母 线切线方向绕原点转至 Z 轴负方向的角度,单位是度, Z 表示节点的 Z 向坐标值。

Attrib ——节点属性,填100表示对应节点是主接触点。

[例子]

如图 5.1 所示某空间框架结构,其节点数据具体内容如下。

有限元分析子系统JFX-FEA

图 5.1 空间框架结构

{ node;

(4;) (4,3.600000E+002,-1.200000E+002,0.000000E+000,3;) (3,2.4000000E+002,0.0000000E+000,1.2000000E+002,3;) (2,0.0000000E+000,0.000000E+000,1.2000000E+002,3;) (1,0.0000000E+000,0.000000E+000,0.000000E+000,3;) }//End of Block

5.2 单元数据

单元数据块关键字为 element,用于对有限元模型的所有单元的类型、构成及单元的 性质数据引用进行描述。

该数据块格式为:

记录	字段	描述	类型
1	NE	单元总数	整型数
	ID	单元标识	整型数
	TYPE	单元类型	整型数
1 NE	MaterialID	材料引用	整型数
I~INE	GeometryID	几何性质引用	整型数
	AdditionID	附加性质引用	整型数
	Nodes	节点描述	整型数

单元类型如下:

- TYPE=10000, 三向拉压弹簧单元;
- TYPE=20100, 2 点偏心梁单元;
- TYPE=20200, 2 点轴力杆单元;
- TYPE=20210, 2 点弹塑性轴力杆单元;
- TYPE=30300, 3 点平面应力膜单元;
- TYPE=30310, 3角形弹塑性平面应力膜单元 (暂未实现);

TYPE=40300, 4 点平面应力膜单元;

有限元分析子系统JFX-FEA

- TYPE=40301, 4 点平面应变膜单元;
- TYPE=40302, 4 点非协调平面应力膜单元;
- TYPE=40303, 4 点非协调平面应变膜单元;
- TYPE=40304, 4 点矩形膜单元;
- TYPE=40310, 4 点弹塑性平面应力膜单元;
- TYPE=50300, 5 点等参平面膜单元;
- TYPE=60300, 6 点等参平面膜单元;
- TYPE=80300, 8 点等参平面膜单元;
- TYPE=30400, 3角形薄板单元;
- TYPE=30500, 3角形薄壳单元;
- TYPE=30501, 3角形各向异性薄壳单元;
- TYPE=40500, 任意四边形壳单元;
- TYPE=40501, 任意四边形各向异性壳单元;
- TYPE=80600, 8 点块体单元;
- TYPE=80601, 8 点非协调块体单元;
- TYPE=80610, 8 点弹塑性块体单元;
- TYPE=40700, 轴对称旋转壳单元;
- TYPE=40800, 任意四边形 4 节点轴对称环体单元;
- TYPE=50800, 任意四边形 5 节点轴对称环体单元;
- TYPE=60800, 任意四边形 6 节点轴对称环体单元;
- TYPE=70800, 任意四边形7节点轴对称环体单元;
- TYPE=80800, 任意四边形 8 节点轴对称环体单元;
- TYPE=40900, 任意四边形复合材料夹层板壳单元;

TYPE=30900, 三角形复合材料夹层板壳单元;

TYPE=41000, 任意四边形复合材料层合板壳单元;

TYPE=31000, 三角形复合材料层合板壳单元

TYPE=11100, 铆钉单元;

TYPE=21200, 平面接触单元, 为二点单元;

TYPE=21201,空间接触单元,为二点单元。

TYPE 有以下规则:

XXYYZZ

其中:

XX—拓扑类型(基本是节点数)

YY--单元分类,如板,梁,壳

ZZ—单元分类子类,如应变膜单元、应力膜单元

[例子]

图 5.1 所示结构单元数据内容如下。

{ element; (3;) (1,20100,1,1,1,1,2;) (2,20100,1,1,2,2,3;) (3,20100,1,1,3,3,4;) }//End of Block 各类单元出口节点次序及单元局部坐标系的取法如下。

三向弹簧元出口节点次序与局部坐标系的取法

空间偏心梁元出口节点次序与局部坐标系的取法

三角形平面膜、板、壳元出口节点次序与局部坐标系的取法及边号定义

矩形平面膜、板、壳元出口节点次序与局部坐标系的取法

四边形平面膜、板、壳元出口节点次序与局部坐标系的取法

五点平面膜元出口节点次序与局部坐标系的取法

六点平面膜元出口节点次序与局部坐标系的取法

八点平面膜元出口节点次序与局部坐标系的取法

轴力杆元出口节点次序与局部坐标系的取法

八点块体元出口节点次序与局部坐标系的取法

任意四边形 4 节点轴对称环体单元出口节点次序与局部坐标系的取法

说明: 对各种平面单元,只画出该单元所在平面的局部坐标系的 x 轴和 y 轴, z 轴按 右手规则确定。对平面单元,法线正方向根据第一条边和第二条边由右手定则确定,上表 面方向为法线正向的单元表面。

5.3 单元的材料性质数据

材料性质数据块关键字为 material,用于对材料性质进行定义。

该数据块格式为:

记录	字段	描述	类型
1	NM	材料总数	整型数
	ID	材料标识	整型数
1 NIM	Description	材料描述	字符串
	TYPE	材料类型	整型数
	MaterialData	一组描述材料的数据	实型数

MaterialData:

材料类型分为各向同性和平面正交各向异性两种,输入数据各包含 50 个实型数或整型数,格式分别为下表所示,

	各向同性 平面正交各向异性		
Туре	1	2	
1	杨氏模量 E	杨氏模量 Ex	
2	泊松比v	泊松比vxy	
3	密度ρ	密度p	
4	热(线)膨胀系数α	热(线)膨胀系数α	
5	剪切模量G	剪切模量 Gxy	
6	0.0	Еу	
7	0.0	Gxz	
8	0.0	Gyz	
9	0.0	0.0	
10	0.0	0.0	
11-30	弹塑性性质数据	弹塑性性质数据	
31-40	热传导性质数据	热传导性质数据	
41	拉伸强度 S_tension	X 向拉伸强度 Sx_tension	
42	压缩强度 S_compression	X 向压缩强度	

有限元分析子系统JFX-FEA

		Sx_compression
43	0.0	Y 向拉伸强度 Sy_tension
44	0.0	Y 向压缩强度 Sy_compression
45	剪切强度 S_shear	剪切强度 S_shear
46-50	0.0	0.0

对于各向同性材料,如果G输入为零,则程序根据E和v自动计算G值。 上表中,弹塑性性质数据格式为:

I1, I2, I3, I4, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10;0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;

其中,各参数意义如下。

I1__ 整数,材料模型类别指示; modeltype

I2___ I2=0;

I3____I3=0;

I4____I4=100000;

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10_ 实数。

根据材料模型类别指示数的不同,材料模型描述数据意义如下:

modeltype=1, Mises model

R1—Initial stress (K) 初始屈服应力

R6—Plasticity modulus (H) 塑性硬化模量

2. modeltype=2, Mohr-coulomb model

R1—Friction angle 摩擦角

R2—Dilatancy angle 膨胀角

R3—Cohesion 内聚力

有限元分析子系统JFX-FEA

- R7-- Plasticity modulus (H) 塑性硬化模量
- 3. modeltype=3, Drucker-Prager model

R1—Alpha α

R2—Ksai Ψ

R3—Cohesion 内聚力

R7-- Plasticity modulus (H) 塑性硬化模量

上表中, 热传导性质数据格式为:

- Klx, Kly, Klz, Cpl, Ksx, Ksy, Ksz, Cps, tf, Lheat
- Klx, 液态下单元局部坐标系 X 向热传导率。
- Kly, 液态下单元局部坐标系 Y 向热传导率。
- Klz, 液态下单元局部坐标系 Z 向热传导率。
- Cpl, 液态下热容 C 和材料质量密度的乘积。
- Ksx, 固态下单元局部坐标系 X 向热传导率。
- Ksy, 固态下单元局部坐标系 Y 向热传导率。
- Ksz, 固态下单元局部坐标系 Z 向热传导率。
- Cps, 固态下热容 C 和材料质量密度的乘积。
- tf, 相变临界温度。

Lheat, 潜热。

[例子]

图 5.1 所示结构材料数据内容如下。

{ material;

(1;)
(1,"beam1",1,

3.0000000E+004,3.0000000E-001,1.0000000E+000,1.0000000E+000,1.2000000E+004, 0.0000000E+000, 0.0000000E+000, 0.0000000E+000,0.0000000E+000,0.0000000E+000,

0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000,0.00000000E+000,0.00000000E+000,0.00000000E+000,0.0000000E+000,0.0000000E+000,0.00000000

```
0.000000E+000, 0.000000E+000, 0.000000E+000, 0.000000E+000, 0.000000E+000, 0.000000E+000, 0.000000E+000, 0.000000E+000;)
```

}//End of Block

5.4 单元属性数据块

单元属性数据块数据块关键字为 geometryProp, 用于对单元几何尺寸等属性进行定义。

该数据块格式为:

记录	字段	描述	类型
1	NG	单元属性总数	整型数
1~NG	ID	单元属性标识	整型数
	Description	单元属性描述	字符串
	TYPE	单元属性类型	整型数
	GeometryPropData	一组描述单元属性的数据	实型数

GeometryProp Data

根据单元属性类型不同, 单元属性数据描述格式及意义如下:

	杆元	膜、板、 売单元	轴对称旋 转壳单元	梁单元	弹簧元	块体 元
Туре	1	2	3	4	5	6
1	截面	厚度 T	厚度 T	周长C	Kx	
	面积 F					
2	截面	Tmax	Tmax	F	Ку	
	周长 L					
3				Jy	Kz	
4				Jz	Coord	

5		Jd	
6		Fy	
7		Fz	
8		Ts	
9		Wy1	
10		Wz1	
11		Wy2	
12		Wz2	
13		Thita	
14		Yy1	
15		Zz1	
16		截面类型	
17		Н	
18		В	
19		Th	
20		Tb	
21		Cb	

膜单元,板单元壳单元及轴对称旋转壳单元单元属性数据中 Tmax 数据暂时不用, 可 填写为 0.0。

梁截面性质中, F为截面积, Jy 为梁单元主轴坐标系 Y 轴惯性矩, Jz 为绕梁单元 主轴坐标系 Z 轴惯性矩, Jd 为绕梁单元主轴坐标系 X 轴惯性矩, Thita 为梁截面主轴 Y' 与梁自然坐标系 Y 夹角, Yy1, Zz1 是梁截面形心在梁自然坐标系中的坐标, Fy 为坐 标 平面 XOZ 内的等效抗剪面积, Fz 为坐标 平面 XOY 内的等效抗剪面积 $W_{y1}, W_{z1}, W_{y2}, W_{z2}$ 分别表示梁的局部坐标系中 Y、Z 轴两方向的截面模量(W_{y1} 对应主惯性 系 y 轴下半平面的点, W_{y2} 对应主惯性系 y 轴上半平面的点, W_{z1} 对应主惯性系 z 轴左半平 面的点, W_{z2} 对应主惯性系 z 轴右半平面的点)(用于求梁的截面应力), 若不需求梁的截 面应力, 则均可填 1.0。TS 是梁截面对称类型指示数。

梁单元正应力 σ_B 是该梁沿全长四等分的五个截面上的正应力值。因为梁的截面形状 多种多样,所以计算梁截面上的应力必须根据具体截面形状,将轴力与两个惯性主轴方向 的弯矩及四个截面参数作不同的组合。对此,系统考虑了一般情况下的梁单元正应力计 算,对用户是很方便的。具体做法介绍如下:

(a) 在结构分析数据文件中,定义了梁单元截面模量数据: Wy1,Wz1,Wy2,Wz2(两个主轴 方向的四个断面模数),并定义了截面对称性类型JS和截面积A。

(b) 在计算每个截面上的最大正应力时, 首先计算下列四个应力值:

$$\sigma_5 = \frac{N}{A} + \frac{M_y}{W_{y1}}, \sigma_6 = \frac{N}{A} - \frac{M_y}{W_{y2}},$$
$$N = \frac{M_z}{M_z} = \frac{N}{A} - \frac{M_y}{W_{y2}},$$

$$\sigma_7 = \frac{1}{A} - \frac{1}{W_{z1}}, \sigma_8 = \frac{1}{A} + \frac{1}{W_{z2}}$$

它们是惯性主轴与截面边缘交点处由轴力N与弯矩合成作用下的正应力。

(c) 根据截面对称性类型JS, 计算截面正应力较大的角点处的正应力值:

 $\stackrel{\text{\tiny M}}{=}$ JS=1, $\sigma_1 = \sigma_5 + \sigma_7 - N/A$, $\sigma_2 = \sigma_5 + \sigma_8 - N/A$,

 $\sigma_3 = \sigma_6 + \sigma_7 \text{-} N/A, \ \sigma_4 = \sigma_6 + \sigma_8 \text{-} N/A,$

这适用于两个主轴完全对称的截面,如矩形截面。

 $\exists JS = 2$, $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = 0$,

这适用于没有角点的截面,如十字形截面和圆形截面。

 $\leq JS = 3$, $\sigma_1 = \sigma_5 + \sigma_7 - N/A$, $\sigma_3 = \sigma_6 + \sigma_7 - N/A$,

 $\sigma_2 {=} \sigma_4 {=} 0$,

这适用于截面关于第一主轴对称且角点在第一主轴正方向,如等边角钢截面和槽钢截面。

 $\exists JS = 4$, $\sigma_2 = \sigma_5 + \sigma_8 - N/A$, $\sigma_4 = \sigma_6 + \sigma_8 - N/A$,

 $\sigma_1 = \sigma_3 = 0$,

这适用于两个主轴完全对称的截面,如矩形截面。

 $\stackrel{\text{\tiny 1}}{=} JS = 5, \sigma_1 = \sigma_5 + \sigma_7 - N/A, \sigma_2 = \sigma_5 + \sigma_8 - N/A,$

 $\sigma_3 = \sigma_4 = 0$,

这适用于截面关于第二主轴对称且角点在第二主轴正方向,如角钢、槽钢截面相对JS=3时转动90°放置。

 $\exists JS=6, \sigma_3=\sigma_6+\sigma_7-N/A, \sigma_4=\sigma_6+\sigma_8-N/A,$

 $\sigma_1 = \sigma_2 = 0$,

这种截面与JS=5的相同,但角点在第二主轴正方向。

$$\stackrel{\text{\tiny M}}{=}$$
 JS=7, $\sigma_2 = \sigma_5 + \sigma_8 - N/A$, $\sigma_3 = \sigma_6 + \sigma_7 - N/A$,

 $\sigma_1 = \sigma_4 = 0$,

 $\stackrel{\text{\tiny 1}}{=} JS=8, \sigma_1=\sigma_5+\sigma_7-N/A, \sigma_4=\sigma_6+\sigma_8-N/A,$

 $\sigma_2 = \sigma_3 = 0$,

上述两种截面的两个角点在对角线方向。

如以矩形断面为例, σ1~σ8的位置可用面图表示:

(d) 从 σ₁~σ₈ 中选取绝对值最大的作为该截面的最大正应力。

弹簧单元的各方向刚度系数是在相对坐标系中描述的。弹簧单元单元属性数据中, Kx, Ky, Kz 都是实型数, 分别表示沿相对坐标系 x, y, z 轴方向的刚度。COORD 是整型 数, 填相对坐标系标识符。

平面接触元和空间接触元的单元属性数据格式如下表所示。

	平面接触元	空间接触元
Туре	11	12
1	IDCOORD	IDCOORD
	(接触角相对坐标系)	(接触角相对坐标系)
2	SLIDENQ (I4)=111000	SLIDENQ (I4)=222210
3	FRICTION FACTOR (R1)	FRICTION FACTOR (R1)
4	EPSILON (R2)=0.001	EPSILON (R2)=0.001
5	0.0	0.0

FRICTION FACTOR:实型数,表示接触面摩擦系数。

复合材料的单元属性数据格式如下表所示。

	层合板复合材料 (纤维增强)
Туре	7
Geometry	Prop
1	铺层总数(整数)
2	材料函数 ID (整数)
3	厚度函数 ID (整数)
4	材料方向函数 ID(整数)
5	方向描述的相对坐标系 ID(NCD)

注: 描述纤维铺层方向时, 需要参照相对坐标系。应保证该相对坐标系的 X 轴与单元局部

系 X'OY'平面平行。铺层角度是指相对坐标系的 X 轴绕局部坐标系 Z'轴转到纤维方向所转过的角度,以局部坐标系 Z'轴正方向为正。下同。

	夹层板复合材料 (纤维增强)
Туре	8
Geometry	yProp
1	表板铺层总数 (整数)
2	表板材料函数 ID(整数)
3	表板铺层厚度函数 ID(整数)
4	材料铺层方向函数 ID(整数)
5	方向描述的相对坐标系 ID(NCD)
6	夹芯材料 ID
7	夹芯材料厚度(实型数)

	复合材料(多层网格,中间数据)
Туре	9(备用)
	GeometryProp
1	Axx
2	Ауу
3	Axy
4	Ass
5	表板密度
6	夹心材料 ID(整数)
7	0.0
8	0.0
9	厚度函数 ID (整数)
10	0.0

	复合材料(多层网格,原始数据)
Туре	10(备用)
	GeometryProp
1	网格层数(整数)
2	表板材料 ID(整数)
3	夹心材料 ID(整数)
4	厚度函数 ID (整数)
5	刚度折减系数
6	方向描述的相对坐标系 ID(NCD)

7	沿Y向网线条宽与空隙宽之比Px
8	沿 X 向网线条宽与空隙宽之比 Py
9	0.0
10	0.0

对于夹心复合材料, 表板铺层总数指上表板铺层数。

厚度函数和材料方向函数中 X 值表示层序号, Y 值表示对应层的厚度或铺层方向。 在以厚度函数描述各层厚度时, 如果对某层厚度未显式定义, 则约定该层厚度与前一层 相同。对于, 铺曾方向的描述也同样如此。

目前, 在层合板中只考虑各层材料相同的情形, 在夹层板复合材料只考虑表板各层 材料相同的情形, 因此, 材料函数或表板材料函数中第一个Y 值表示了层合板材料或夹 层板复合材料表板的材料的 ID。应注意, 层合板材料或夹层板复合材料表板的材料只能 是平面正交各向异性材料。

[例子]

图 5.1 所示结构单元属性数据内容如下。

{ geometryprop;

(1;)

}//End of Block

5.5 附加性质数据块

附加性质数据块关键字为 additionprop, 用于对单元附加性质进行定义。

记录	字段	描述	类型
1	NA	附加性质总数	整型数
1-NA	ID	附加性质标识	整型数
	Description	附加性质描述	字符串

该数据块格式为:

TYPE	附加性质类型	整型数
AdditionPropData	一组描述附加性质的数据	实型数

	梁单元
Туре	1
Addition	PropData:
1	Ax
2	Ау
3	Az
4	Bx
5	Ву
6	Bz
7	OrientX
8	OrientY
9	OrientZ
10	Cx(C 矢量)
11	Cy(C 矢量)
12	Cz(C 矢量)

Ax, Ay, Az, Bx, By, Bz, 是梁单元两端刚臂 AA'和 BB'在全局坐标系中 描述的矢量;刚臂是指从节点 A(或 B)指向截面与自然坐标系 X 轴交点 A'(或 B')的矢 量。

OrientX, OrientY, OrientZ ——描述全局坐标系 XYZ 和梁单元自然坐标系 xyz 关系的欧拉角, 单位为弧度。由全局坐标系经该欧拉角进行旋转得到坐标系 x'y'z', 其中, z'对应自然坐标系的 x 轴(即梁单元轴向), y'对应自然坐标系的 z 轴, x'对应自然坐标系的 y 轴。

Cx, Cy, Cz —— 描述梁截面摆放的 C 矢量, 全局坐标系下描述值。

[例子]

图 5.1 所示结构单元附加数据内容如下。

{ additionprop;

(3;)

(1,"A",1,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000,1.5707963E+000;) (2,"A",1,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000,0.0000000E+000,1.5707963E+000,1.5707963E+000,0.0000000E+000;)

(3,"A",1,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000,0.0000000E+000,7.8539814E-001,-4.0969092E+000,6.4798698E-015;) }//End of Block

5.6 约束集数据

约束集数据块关键字为 **constraint**, 用于对有限元模型中结构位移所受约束(边界条件)进行定义。

该数据块格式为:

记录	字段	描述	类型
1	NCS	边界约束集总数	整型数
1	ActiveSet	当前活跃的边界约束集 ID(暂不用)	整型数
1~NCS	ConstraintSetBlock	边界约束集数据块	

ConstraintSetBlock:

记录	字段	描述	类型
	SetID	约束集 ID	整型数
	Description	约束集描述	字符串
	UcsID	统一位移规格数描述参考坐标系 ID	整型数
	U	统一 X 方向位移规格数	整型数
1	V	统一Y方向位移规格数	整型数
1	W	统一Z方向位移规格数	整型数
	THX	统一 X 方向角位移规格数	整型数
	THY	统一Y方向角位移规格数	整型数
	THZ	统一Z方向角位移规格数	整型数
	Ncn	记录个数	整型数
	NodeID	被修正节点 ID	整型数
	UcsIDi	位移规格数描述参考坐标系 ID	整型数
	Ui	修正 X 方向位移规格数	整型数
	Vi	修正 Y 方向位移规格数	整型数
	Wi	修正 Z 方向位移规格数	整型数
	THXi	修正 X 方向角位移规格数	整型数
1~Ncn	THYi	修正 Y 方向角位移规格数	整型数
	THZi	修正Z方向角位移规格数	整型数
	MasterNodeID	主节点 ID	整型数
	Dui	X 方向指定位移数据	实型数
	Dvi	Y方向指定位移数据	实型数
	Dwi	Z方向指定位移数据	实型数

DTHXi	X 方向角位移指定位移数据	实型数
DTHYi	Y 方向角位移指定位移数据	实型数
DTHZi	Z方向角位移指定位移数据	实型数

位移规格数的意义为:

0: 几何可动位移;

1: 独立位移;

2: 相关位移;

3: 指定零位移;

4: 指定非零位移。

其中, 如果没有主从关系或指定位移, 则主节点号和各向位移相关数据也需填充任 意实数。

[例子]

图 5.1 所示结构单元附加数据内容如下。

{ constraint;

(1,-1000;)

{ constraintset;

```
(1,"boundary",0,1,1,1,1,1,1,2;)
```

0.0000000E+000,0.0000000E+000;)

```
(1,0,3,3,3,3,3,3,0,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000,
0.0000000E+000,0.0000000E+000;)
```

}//End of Block

}//End of Block

5.7 相对坐标系数据

相对坐标系数据块关键字为 Coordsys。

该数据块格式为:

记录	字段	描述	类型
1 NC		相对坐标系总数	整型数
1~NC	ID	相对坐标系标识	整型数
	Description	相对坐标系描述	字符串
	TYPE	相对坐标系类型	整型数
	CoordData	一组描述相对坐标系的数据③	

相对坐标系描述具有三种不同方式, 分别对应 TYPE=0, TYPE=1, 和 TYPE=2。

第1种描述方式:

每个相对坐标系由 3 个 Euler 角(单位是度) 描述, 表示相对坐标系由全局坐标系经 Euler 角描述的旋转而成;

第2种描述方式:

每个相对坐标系由3个节点标识符 I, J, K 描述, 相对坐标系 x 轴方向为 I 至 J 方向, y 轴方向在 IJK 平面内, 按右手坐标系规则确定 z 轴方向。

第3种描述方式:

每个相对坐标系由 3 个角度(单位是度) 描述, 表示相对坐标系由全局坐标系经 1-2-3 旋动而成(FEMAP 格式)。

[例子]

以下给出了三个以不同方法描述的相对坐标系的描述数据。

{ coordsys; (3;) (1,"coor1",2,90.000000E+000,0.000000E+000,0.000000E+000;) (2,"coor2",1,2,4,6;) (3,"coor3",0,2.7000000E+002,4.5000000E+001,9.0000000E+001;) }//End of Block

5.8 荷载模式描述数据

荷载模式数据块关键字为 load, 用于对有限元模型所调用的各荷载模式进行描述。

该数据块格式为:

记录	字段	描述	类型
1	NLS	荷载模式总数	整型数
1~NLS	LoadSetBlock	荷载模式数据块	

LoadSetBlock:

记录	字段	描述	类型
1	ID	荷载模式 ID	整型数
	Description	荷载模式描述	字符串
	NL	荷载总数	整型数

1~NL	Туре	荷载类型	整型数
1 112	LoadSetData	荷载数据	整/实型数

荷载数据格式随荷载类型的不同而具有不同的描述格式,见下表

0	1	2	100	700	200	300	400	500	600	620
ī点	节点	单元 ID	节点	节点	节点	节点	OmegaX	Kx	单元	单元
[D	ID		ID	组 Id	ID	ID			ID	ID
УX	Ax	IND	Т	起点	Q	Qx	OmegaY	Ky	Q	Qx
				Px						
у	Ay	Qmax		起点		Qz	OmegaZ	Kz		Qy
				Ру						
Z	Az	Alpha		起点		My	Rx			Qz
				Pz						
ſx	Rx	X _Q /L		起点		θ	Ry			
				Mx						
ſy	Ry			起点			Rz			
				My						
ſz	Rz			起点			XO			
				Mz						
				终点			YO			
				点 Px						
				终点			ZO			
				Py						
				终点						
				Pz						
				终占						
				Mx						
				终占						
				Mv						
				~ ^ ^						
	0 点 D 'x 'y 'z Ix Iz	0 1 点 节点 D ID 'x Ax 'y Ay 'z Az 'z Az fx Rx fy Ry iz Rz	0 1 2 点 节点 単元 ID ID ID 'x Ax IND 'y Ay Qmax 'z Az Alpha fx Rx X_0/L fy Rz iz Rz iz Nz iz iz iz iz	0 1 2 100 点 节点 単元 ID 节点 ID ID ID 'x Ax IND T 'y Ay Qmax 'z Az Alpha 'x Rx X_0/L 'y Ry	0 1 2 100 700 点 节点 単元 ID 节点 节点 10 组 Id D ID ID ID 1D 组 Id 'x Ax IND T 起点 'y Ay Qmax レー Px 'y Ay Qmax レー Pz 'y Az Alpha レー レー 'z Rz Xa/L レー レー 'z Rz Xa/L レー レー 'z Rz Ya/L レー レー 'z Rz Ya/L レー レー 'z Rz Ya/L レー	0 1 2 100 700 200 点 节点 単元 ID 节点 节点 节点 节点 D ID ID ID 41 d ID 'x Ax IND T 起点 Q 'y Ay Qmax 超点 Py 'y Ay Qmax 超点 Pz 'y Az A1pha 超点 Pz 'z Rz Xq/L 超点 Mx 'y Ry - - Az Pz 'z Rz - - Az Az 'z Rz - - Az Az 'z Rz - - - Az	0 1 2 100 700 200 300 点 节点 単元 ID 节点 1D ID ID	0 1 2 100 700 200 300 400 in $\hat{\mu}_{\pi}$ <	0 1 2 100 700 200 300 400 500 in in	0 1 2 100 700 200 300 400 500 600 is $\ddot{\pi}$ is $\ddot{\mu}$ in $\ddot{\pi}$ is

上表中,荷载类型(Type)意义如下表所示

Туре	荷载类型
0	节点荷载 ^a
1	节点加速度 ^b
2	梁四元荷载°
100	指定节点变温 ^d

120	计算节点变温°
200	轴对称结构表面分布荷载f
300	轴对称结构非轴对称作用的节点力荷载。
400	旋转体力 ^h
500	惯性荷载 ⁱ
600	单元表面压力 ^j
620	单元表面任意方向面力 ^k
700	线荷载

注: a) 节点荷载表示结构节点上所作用的集中力, 一个节点上的节点荷载有 6 个分量, 即

Px, Py, Pz, Mx, My, Mz,

它们是作用在节点上的力及力矩在结构全局坐标系上的各个分量;在输入数据中必须 以实型量表示。

b) 节点加速度荷载用于考虑基础振动的结构的频率响应分析, 表示结构节点的加速 度, 一个节点加速度有 6 个分量, 即

Ax, Ay, Az, Rx, Ry, Rz, 分别表示各平动位移和转动位移的加速度值, 在结构 全局坐标系描述, 在输入数据中必须以实型量表示。

[例子]

{ loadset;

(1,"nodal acceleration",2;)

(1,7,1.0000000E+002,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000;)

(1,8,1.0000000E+002,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000;)

}//End of Block

c) 梁的四元荷载是参考截面的自然坐标系 X′-Y′-Z′进行定义的,作用于梁截面的形 心处。

JIFEX 程序可以处理很复杂的梁内荷载模式。每种荷载类型用一个指示数(整型量) IND 予以区分。最基本的类型有 10 种, 他们是:

- **IND=1** 横向集中力(X'Z'平面内)
- **IND=2** 横向均布力(X'Z'平面内)
- IND=3 轴向集中力
- IND=4 轴向均布力
- **IND=5** 横向三角形荷载(X'Z'平面内)
- **IND=6** 集中弯矩(X'Z'平面内)

IND=7 均匀升温(X'Z'平面内)

IND=8 上下缘温差(X'Y'平面内)

IND=103 集中扭矩

IND=104 均布扭矩

在 IND=1, 2, 5, 6, 7, 8 的情形, 如果将 Y' 轴变成 Z' 轴; 就变成 IND=101, 102, 105, 106, 107, 108 的荷载类型, 即

IND=101 横向集中力(X'Y'平面内)

IND=102 横向均布力(X'Y'平面内)

IND=105 横向三角形荷载(X'Y'平面内)

IND=106 集中弯矩(X'Y'平面内)

IND=107 均匀升温(X'Y'平面内)

IND=108 上下缘温差(X'Y'平面内)

以上列出了全部 16 种基本荷载类型。描述其中任意一种,都可以采用四元荷载标本,它由一个整型量后跟三个实型量,共四个数组成,其中,各参数意义如下:

IND --荷载类型指示数

Qmax --荷载的大小

Qmax 的量纲, 在集中力矩与上、下温差时为力矩的量纲(例如 N*m); 在集中力、 分布力矩与均匀升温时为力的量纲(例如 N); 在分布力时为单位长度上的力(例如 N/m)。

ALFA -- -180° ≤ *ALFA* ≤180°, 表示荷载所在平面与基准面之间的夹角为 *ALFA*, IND=1~8时, 基准面为 X′ Z′; IND=101~108时, 基准面为 X′ Y′; 从 基准面开始, 按右手规则绕 X′轴旋转为正。

实际上, 对于 IND=3, 4, 7, 103, 104, 107 等情况, ALFA 可任填一实数。 不难看出: IND=1, ALFA=-90 与 IND=101, ALFA=0.0 是等价的。

 X_Q/L --描述集中荷载作用位置离左端的距离, 或分布荷载作用范围的界限, L 为梁长。这是一个无量纲实数, $0.0 \le X_o / L \le 1.0$ 。

d) 指定节点变温描述数据为一个实型数, 即 T, 表示结构节点处的温度变化值。必须给出所有节点的变温。

e) 计算节点变温荷载中,节点变温由热传导分析得出。在定义动力荷载模式时(例如 热振动问题中),在荷载模式描述数据中第 i 个该荷载模式表示节点变温是第 i 时刻的节 点温度与节点初始温度之差。因此,如需在 n 个时刻考虑节点变温荷载,则需定义 n 个该 荷载模式,并在动力荷载工况的调用系数表中根据时刻的不同调用相应的荷载模式。

f) 轴对称结构表面分布荷载作用在轴对称单元上,荷载垂直作用于单元边界,节点分 布荷载密度值为Q,沿单元边界外法线方向为正。

g) 轴对称结构非轴对称作用的节点力荷载作用在轴对称单元上, Qx, Qz 分别为节点力 在径向和轴向的分量, My 表示 节点弯矩, θ为节点力所在平面与基准的 R-Z 平面之间的 夹角, 是一实型数。单位为度。

h) 旋转体力荷载的描述数据为 9 个实型数, 其中 OmegaX, OmegaY, OmegaZ, 分别表示结构旋转的角速度在全局坐标系的分量, 单位是 1/秒。Rx, Ry, Rz, 分别表示结构旋转的角加速度在全局坐标系的分量, 单位是 1/秒*秒。规定结构绕定轴旋转,旋转轴经过由 X0,Y0,Z0 定义的点。

i) 结构惯性荷载描述结构具有线加速度时的惯性力荷载,数据包括三个实型数,即 Kx, Ky, Kz, 分别表示加速度在全局坐标系各坐标轴方向的分量,并且符号与惯性 荷载的方向一致。在使用国际单位制或 Kg-mm-s 单位制时,加速度单位为 *m*/*s*²。

j) 单元表面压力数据包括荷载所作用单元的 ID 和一个实型数 Q, 即单元正压力的大小。

k) 单元表面任意方向面力数据包括荷载所作用单元的 ID 和三个实型数 Qx, Qy, Qz, 分别表示单元面力在全局坐标系的三个分量。

[例子]

图 5.1 所示结构荷载分别以节点荷载和梁的四元荷载描述,数据内容如下。

{ load;

(1;)

{ loadset;

(1,"load1",4;)

```
(0,2,2.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000, 0.0000000E+000;)
```

(2,2,1,4.000000E+000,-90.0,5.000000E-001;)

(0,3,0.000000E+000,0.000000E+000,0.000000E+000,0.0000000E+000,1.2000000E+002, 0.0000000E+000;) (0,3,0.000000E+000,0.0000000E+000,-1.000000E+000,0.0000000E+000,0.0000000E+000;) }//End of Block

}//End of Block

5.9 节点附加质量数据块

节点附加质量数据块关键字为 nodemass, 用于定义结构上除单元质量以外的固结在节点上的附加质量。

记录	字段	描述	类型
1	NM	节点质量总数	整型数
1~NM	Туре	节点质量类型	整型数
	MassData	节点质量数据	

MassData:

	节点集中质量	广义节点质量
Туре	1	2
1	节点 ID	节点 ID
2	М	М
3		Ex
4		Ey
5		Ez
6		Jx
7		Jy
8		Jz
9		Jxy
10		Jyz
11		Jzx

其中, M 为质量, Ex, Ey, Ez 表示在全局坐标系 OXYZ 中从节点到广义质量中心的矢径, Jx, Jy, ..., Jzx 分别是相对于参考坐标系 oxyz 的质量惯性矩,在国际单位制中,其单位是公 斤*平方米,该参考坐标系原点位于广义质量中心处,方向与全局系平行。

5.10 热传导分析数据块

热传导分析数据块关键字为 THERMAL ,用于定义有关温度场计算的热边界条件。

记录 No.	字段	描述	类型
1	NI	数据项数	整型数
1~NI	TYPE	热边界条件类型	整型数
	THERMDATA	一组热边界条件数据	

THERMDATA:

	初始温度	第一类边界条 件	第二类(热 流)边界条件	第三类(对 流)边界条
				件
Туре	0	1	2	3
1	廿点 ID	节点 ID	单元 ID	单元 ID

2	初始温度	给定温度	单元边号	单元边号
3	0.0	0.0	热流密度(定常)	Beta
4	0.0	0.0	0.0	Т

	第四类(辐射)	热源强度	膜杆侧面参数
	边界条件		(对流)
Туре	4	5	6
1	单元 ID	单元 ID	单元 ID
2	边号/面号	热源强度	面号
3	Beta	0.0	Beta
4	T0	0.0	T01

6 控制数据格式说明

控制数据块的关键字是 control。控制数据块内容在控制数据文件中,其格式如下表所示。

记录	字段	描述	类型
	Static Analysis	静力分析指示1	整型数
1	Frequency Analysis	动力自振分析指示1	整型数
1	Dynamic Respond	动力时域分析指示1	整型数
	Base Acceleration	基础加速度动力分析指示 ¹	整型数
	Harmonic Exiting	节点简谐力响应分析指示1	整型数
	Thermal	温度场及温度应力分析指示1	整型数
	Bulking Analysis	屈曲稳定分析指示1	整型数
	Contact Analysis	接触分析指示1	整型数
	Elastic plastic Analysis	弹塑性分析指示1	整型数
	Optimal Analysis	优化分析指示 ¹	整型数
	IDACTCONST	活动约束集 ID	整型数
	IDORDERCOOR	拟优序排序参考坐标系	整型数
	ORDERFLAG	拟优序排序指示数	整型数
	FLAG1	填1表示自动生成位移规格数	整型数
	FLAG2	指定计算核心模块占用内存数 ²	整型数
	FLAG3	填1表示自动添加软弹簧	整型数
	FLAG4	保留	整型数
	FLAG5	保留	整型数
	FLAG6	保留	整型数
	FLAG7	保留	整型数
	FLAG8	保留	整型数
	FLAG9	保留	整型数
	FLAG10	保留	整型数
	FLAG11	保留	实型数
	FLAG12	保留	实型数
	FLAG13	保留	实型数
	FLAG14	保留	实型数
	FLAG15	保留	实型数
	FLAG16	保留	实型数
	FLAG17	保留	实型数
	FLAG18	保留	实型数
	FLAG19	保留	实型数

	FLAG20	保留	实型数
2	Bank File	临时数据库文件名	字符串
	Universal File	Universal 分 析数据文件名	字符串
	Optimization File	优化数据文件名	字符串
	Reserve 1	保留	字符串
	Reserve 2	保留	字符串
	Analysis Result File	分析结果图形文件名	字符串
3	NC	控制数据集总数	整型数
4	ControlSetBlock	控制数据集块	

注¹: 对于各项分析指示数据,填1 表示进行该项分析(对于动力时域分析,填1 表 示调用 Newmark 方法,填2 表示调用基于模态展开的精细时程积分法),填0 表示无该 项分析。对于基础加速度动力分析指示,填3 表示进行地震响应分析。

注²: 指定计算核心模块占用内存数单位为 兆字节 (MB),缺省为 40MB,最小不小 于 20MB,最大值推荐为系统剩余物理内存的 2/3,如果超过此值,由于内外存数据交换, 计算效率可能降低。

上表中部分参数意义如下。

IDACTCONST——活动约束集 ID,表示在本次分析中标识符为 IDACTCONST 的约 束集为当前的约束集;

IDORDERCOOR——进行拟优序排序时的参考坐标系的相对坐标系标识符;填0时标 识在全局坐标系中进行排序;

ORDERFLAG——拟优序排序指示数。为减小刚度矩阵的半带宽,从而节省内存和外存存储单元及提高计算效率,可以指定程序进行拟优序排序。例如,填123 时表示以 x,y,z 坐标的优先次序进行排序,填132 时表示以 x,z,y 坐标的优先次序进行排序,…,以此类推。特殊地,填0 与填321 等价,即表示按 z,y,x 坐标的优先次序进行排序。拟优序排序是在由 IDORDERCOOR 指定的参考坐标系中进行的。

控制数据集块的关键字为 controlset, 具体内容如下。

记录	字段	描述	类型
1	Туре	控制数据集类型	整型数

	Description	控制数据集描述	字符串
	NLC	工况数或记录数	整型数
1~NLC	ControlSetData	记录数据	

ControlSet Block:

记录	字段	描述	类型
	Туре	控制数据集类型	整型数
1	Description	控制数据集描述	字符串
	NLC	工况数或记录数	整型数
1~NLC	ControlSetData	记录数据	

控制数据集记录数据格式将在本手册的有关章节中进行具体说明。

7 静力分析

7.1 静力分析功能

静力分析功能可以进行多种荷载作用下结构的线弹性静力分析。其中的荷载类型包括 节点荷载、面法向力荷载,面荷载,离心力荷载,自重荷载,梁单元荷载等。

静力分析功能允许同时进行多个工况的分析。静力分析输出结果除了图形数据文件 外,还有节点位移数据文件 displs.res,单元内力数据文件 elefrc.res。如结构中具有梁单元, 并且在输入数据中已给定了梁的截面模量数据,则梁截面应力数据将在 bmstrs.res 中输 出。在 bmstrs.res 文件中,将每一梁单元从起点至终点等分选取 5 个截面,分别给出每个 截面中八处位置的应力值。

7.2 静力分析数据格式

一个结构在工作时要受到各种外荷载的作用,结构分析往往要找出几个典型荷载进行 分析,以确定结构的承载能力。所谓荷载集,又称荷载模式,是指一组荷载的集合,它只有 在被调用后才成为真正的荷载。要分析的真正的荷载组合可称为荷载工况,它们可由荷载 集按照各自的调用系数进行不同的线性组合来表示。因此,在填写静力荷载数据块时,需 要对荷载工况所调用的 NI 个荷载集对应的调用系数 Coeff 进行描述。

进行静力分析需填写静力荷载控制数据块,控制数据集类型为1,具体格式如下:

记录	字段		描述	类型
	(CaseID	工况标识	整型数
	De	escription	工况描述	字符串
1~NLC	NI		项数	整型数
	1~NI	SetID	荷载集标识	整型数
		Coeff	调用系数	实型数

7.3 静力分析算例

如 图 7.1 , 梁 长 L=12.0m, 梁 高 H=2.0m, 厚 度 为 t=1.0m , $E=1.0 N/m^2$, $\nu = 0.333$, $\rho = 1.0 kg/m^3$ 以 3 节点薄板单元进行离散。


```
(0,7,-1.000000E+002,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(0,8,-1.0000000E+002,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
 }//EndofBlock
 }//EndofBlock
 {thermal;
(0;)
 }//EndofBlock
{material;
(1;)
(1,"s22_material",1,
 1.0000E+0,3.3300000E-001,1.0000E+0,0.0000E+0,3.7500000E-
001,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.00000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0
0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
 }//EndofBlock
{geometryprop;
(1;)
(1,"s22_geog",2,1.0000E+0,1.0000E+0;)
 }//EndofBlock
{additionprop;
(0;)
 }//EndofBlock
{group;
(0;)
 }//EndofBlock
{function;
(0;)
 }//EndofBlock
{nodemass;
(0;)
 }//EndofBlock
 {coordsys;
(0;)
 }//EndofBlock
控制数据文件内容为:
//JIFEXAnalysisFileinUniversalFormat.=
{Header;//Headerblock.
("her";2.00;0;)
 {Control;
```

(//Analysisjobcontrol.

1,//Staticanalysisflag.

0,//FrequencyAnalysisflag.

0,//DyanmicRespondflag.

0,//BaseAccelerationflag.

0,//HarmonicExcitingflag.

0,//ThermalAnalysisflag.

0,//BulkingAnalysisflag.

0,//ContactAnalysisflag. 0,//ElasticPlasticAnalysisflag.

0,//OptimalAnalysisflag.

1//ActiveConstraintID.

0,0;

0,// 保留

0,// 保留
0,// 保留
)
"D:\dl_apple\afem_examin\new_s22\new_s22.bnk",//Bankfile.
D:\di_appie\aiem_examin\new_s22\new_s22.unv",//Universalfile.
D. \u1_appre\aren1_examm\new_\$22\new_\$22.opt ,//Optimanne.

"null",//Reservedfile.

"null",//Reservedfile.

"D:\dl_apple\afem_examin\new_s22\new_s22.feg",//Resultgraphicsfile.

)

(1)//ControlSetNumber.

{ControlSet;//StaticAnalysisBlock. (1,"(null)",1) (1,"LoadCase2",1, 1,1.00000E+0) } }//EndofControlBLock.

端部水平位移计算结果为-1200.0,与解析解-1200.0吻合。

8 自振分析

8.1 自振分析功能

JIFEX 系统中,自由振动频率分析采用迁移子空间迭代算法,可以较高的效率和计算 精度计算结构的若干阶低阶振动的固有频率及固有振型,因此适用于大型结构的自振分 析。

8.2 自振分析数据文件格式

进行自由振动分析需填写自振分析控制数据块,控制数据集类型为 3,具体格式如下:

记录	字段	描述	类型
	MODHDZ	截止频率	实型数
	NPAIR	频率阶数	整型数
1	SHIFT	迁移量	实型数
	EPS	迭代收敛的精度	实型数
	g	单位制转换常数	实型数

其中, 各参数意义如下:

MODHDZ一整型数,表示计算时的截止频率。当 MODHDZ 填零时,程序将计算 NPAIR 阶自振频率;否则,直到某阶自振频率高于 MODHDZ 值,程序才不计算更高阶的 自振频率。

NPAIR一整型数,代表所要求的频率阶数。NPAIR=0 而 MODHDZ>0 表示程序将根据截止频率 MODHDZ 自动判断需要计算的频率阶数。如果 NPAIR 值不为零,则 MODHDZ 应填零。如果 MODHDZ 和 NPAIR 同时为零,则不做自振分析;

SHIFT一实型数,利用迁移子空间迭代算法进行自振分析时的迁移量。一般情形下, 计算过程中不要求进行迁移,因此通常给定 SHIFT=0;

EPS一实型数,判断迭代收敛的精度。一般为 0.00001 至 0.01 的小数;

g一实型数。所输入的所有数据(包括节点坐标、材料性质等)采用国际单位制时,填 1.0。引用 Kg,Kgf,m 单位制时,填 9.8;引用 Kg,N,mm 单位制时,填 1000.0;

自振分析输出结果保存在 eigenv.res 文件中,该文件中,分别给出了各阶自由振动的 频率和振型。

8.3 自振分析算例

如图 8.1 所示简支梁,截面积 F=1.0,截面惯性矩 J=1.0,材料杨氏模量 E=10000.0,密度为 1.0,长度为 L=10.0.划分为 8 段梁单元进行自振频率计算。

结构模型数据文件为

{header; ("Modeldatebase",2.0,1;) }//EndofBlock

{node;

```
(9;)
(9,1.000000E+001,0.0000E+0,0.0000E+0,1;)
(8,8.7500E+0,0.0000E+0,0.0000E+0,1;)
(7,7.5000E+0,0.0000E+0,0.0000E+0,1;)
(6,6.2500E+0,0.0000E+0,0.0000E+0,1;)
(5,5.0000E+0,0.0000E+0,0.0000E+0,1;)
(4,3.7500E+0,0.0000E+0,0.0000E+0,1;)
(3,2.5000E+0,0.0000E+0,0.0000E+0,1;)
(2,1.2500E+0,0.0000E+0,0.0000E+0,1;)
(1,0.0000E+0,0.0000E+0,0.0000E+0,1;)
}//EndofBlock
{element:
(8;)
(1,20100,1,1,1,1,2;)
(2,20100,1,1,2,2,3;)
(3,20100,1,1,3,3,4;)
(4,20100,1,1,4,4,5;)
(5,20100,1,1,5,5,6;)
(6,20100,1,1,6,6,7;)
```

```
(7,20100,1,1,7,7,8;)
(8,20100,1,1,8,8,9;)
}//EndofBlock
{constraint:
(1, -1000;)
{constraintset;
(1,"boundary",0,1,1,0,0,0,1,2;)
(1,0,3,3,0,0,0,1,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(9,0,1,3,0,0,0,1,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
}//EndofBlock
}//EndofBlock
{load;
(1;)
{loadset;
(1,"load",1;)
(0,1,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
}//EndofBlock
}//EndofBlock
{thermal;
(0;)
}//EndofBlock
{material;
(1;)
(1,"beam",1,
1.000000E+004,3.000000E-
001,1.0000E+0,1.0000E+0,3.8460000E+003,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.00000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.00000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0
0.0000E+0:)
}//EndofBlock
{geometryprop;
(1:)
(1,"beam",4,0.0000E+0,1.0000E+0,1.0000E+0,1.0000E+0,2.6000000E+006,2.6000000E+006,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0;)
}//EndofBlock
{additionprop;
(8:)
(1,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000,1
.5707963E+000.0.0000E+0:)
(2,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000,1
.5707963E+000,0.0000E+0;)
```

(3,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (4,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000.0.0000E+0:) (5,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (6,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (7,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000.0.0000E+0;) (8,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) }//EndofBlock {group; (0;)}//EndofBlock {function; (0:)}//EndofBlock {nodemass; (0:)}//EndofBlock {coordsys; (0;)}//EndofBlock

控制数据文件为

//=JIFEXAnalysisFileinUniversalFormat.=

{Header;//Headerblock. ("";2.00;0;)

//=====

{Control; (//Analysisjobcontrol. 1,//Staticanalysisflag. 1,//FrequencyAnalysisflag. 0,//DyanmicRespondflag. 0,//BaseAccelerationflag. 0,//HarmonicExcitingflag. 0,//ThermalAnalysisflag. 0,//BulkingAnalysisflag. 0,//ContactAnalysisflag. 0,//ElasticPlasticAnalysisflag. 0,//OptimalAnalysisflag. 1,//ActiveConstraintID.

0,0;

0,0,				
0,// 保留				
0, // 保留				
0,// 保留				
0,// 保留				
0,// 保留				
0,// 保留				
0,// 休留				
)				
) (
"null".//Analysis	BankFile.			
"null",//AnalysisStructureFile.				
"null",//AnalysisOptimalFile.				
"null",//Analysis	ReserverdFiles.			
"null",//Analysis	ReserverdFiles.			
"null"//Analysis	SraphicsFiles.			
) (3)//ControlSetNumber.				
{ControlSet;//StaticAnalysisBlock.				
(1, (11011), 1) (1 "LoadCase1" 1				
1100000E+0				
)				
/				

}

```
{ControlSet;//FrequencyAnalysisBlock.
(3,"(null)",1)
(0.00000E+0,3,0.00000E+0,1.0000000E-004,9.8E+000)
}
{ControlSet;//DynamicAnalysisBlock.
(4,"(null)",1)
(1,"LoadCase1",4,1.0000000E-001,0.00000E+0,0.00000E+0,2.50000000E-001,5.00000000E-
001,1,
1,1
)
}
//EndofControlBLock.
```

计算结果中,前三阶自振频率分别为 30.8962Hz,49.0947Hz,123.5493Hz,与文献比较 结果吻合很好。

9 屈曲分析

9.1 屈曲分析功能

在 JIFEX 程序系统中,结构的稳定性分析是指用有限元法对无缺陷结构线性前屈曲问题的临界荷载及屈曲模式进行计算。

所谓线弹性前屈曲指隐含着以下三部分假设:

(1)轴向压力或膜应力由线弹性分析得出;

(2)在分析屈曲前,不考虑弯矩对屈曲造成的影响;

屈曲平衡过程中,只引起微小位移,并且轴向压力或薄膜力保持不变。

在 JIFEX 系统中,可以根据静力有限元分析的结果作为组合结构的初始前屈曲内力进行弹性屈曲分析。

9.2 屈曲分析数据格式

进行屈曲分析需填写屈曲控制数据块,控制数据集类型为2,具体格式如下:

记录	字段	描述	类型
1~NLC	LoadCaseID	引用的静力分析工况标识	整型数
	Description	屈曲工况描述	字符串
	OrderNumber	屈曲阶数	整型数
	Eps	迭代收敛精度	实型数

各参数意义如下:

 LoadCaseID:
 引用的静力分析工况标识符

 Description:
 屈曲工况描述

 OrderNumber:
 所需计算的屈曲模式阶数

 Eps:
 迭代收敛精度

屈曲分析输出结果文件名为 bucana.res。该文件中,对每阶屈曲模式分别给出临界荷载系数(eigenvalue)和失稳模态。

9.3 屈曲分析算例

如图 9.1 所示四边简支方板,材料各向同性,材料常数满足 π 2D/(4b2)=1,其中

D=Et3/12 (1-v2) , v=0.3, ρ =1.0;

板厚 t=1, 边长 2a=2b=100;

将方板如图按三角形薄壳单元离散,求其临界压力。

结构模型数据文件内容为

{header; ("Modeldatebase",2.0,1;) }//EndofBlock {node; (25;) (28,5.000000E+001,5.000000E+001,0.0000E+0,1;) (27,5.000000E+001,3.7500000E+001,0.0000E+0,1;) (26,5.000000E+001,2.500000E+001,0.0000E+0,1;) (25,5.000000E+001,1.2500000E+001,0.0000E+0,1;) (24,5.000000E+001,0.0000E+0,0.0000E+0,1;) (23,3.7500000E+001,5.000000E+001,0.0000E+0,1;) (22,3.7500000E+001,3.7500000E+001,0.0000E+0,1;) (21,3.7500000E+001,2.5000000E+001,0.0000E+0,1;)

```
(20,3.7500000E+001,1.2500000E+001,0.0000E+0,1;)
(19,3.7500000E+001,0.0000E+0,0.0000E+0,1;)
(17,2.500000E+001,5.000000E+001,0.0000E+0,1;)
(16.2.500000E+001.3.7500000E+001.0.0000E+0.1:)
(15,2.5000000E+001,2.5000000E+001,0.0000E+0,1;)
(14,2.500000E+001,1.2500000E+001,0.0000E+0,1;)
(13.2.500000E+001.0.0000E+0.0.0000E+0.1;)
(12,0.0000E+0,5.0000000E+001,0.0000E+0,1;)
(11, 1.2500000E+001, 5.0000000E+001, 0.0000E+0, 1;)
(10.0.0000E+0.3.7500000E+001.0.0000E+0.1;)
(9,1.2500000E+001,3.7500000E+001,0.0000E+0,1;)
(8,0.0000E+0,2.5000000E+001,0.0000E+0,1;)
(5,1.2500000E+001,2.5000000E+001,0.0000E+0,1;)
(4,0.0000E+0,1.2500000E+001,0.0000E+0,1;)
(3,1.2500000E+001,1.2500000E+001,0.0000E+0,1;)
(2,1.2500000E+001,0.0000E+0,0.0000E+0,1;)
(1,0.0000E+0,0.0000E+0,0.0000E+0,1;)
}//EndofBlock
{element:
(32;)
(1,30500,1,2,0,1,2,3;)
(2,30500,1,2,0,1,3,4;)
(3,30500,1,2,0,4,3,5;)
(5,30500,1,2,0,4,5,8;)
(6,30500,1,2,0,8,5,9;)
(7,30500,1,2,0,8,9,10;)
(8,30500,1,2,0,10,9,11;)
(9,30500,1,2,0,10,11,12;)
(10,30500,1,2,0,2,13,14;)
(11,30500,1,2,0,2,14,3;)
(12,30500,1,2,0,3,14,15;)
(13,30500,1,2,0,3,15,5;)
(14,30500,1,2,0,5,15,16;)
(15,30500,1,2,0,5,16,9;)
(16,30500,1,2,0,9,16,17;)
(17,30500,1,2,0,9,17,11;)
(18,30500,1,2,0,13,19,20;)
(19,30500,1,2,0,13,20,14;)
(20,30500,1,2,0,14,20,21;)
(21,30500,1,2,0,14,21,15;)
(22.30500, 1, 2, 0, 15, 21, 22;)
(23,30500,1,2,0,15,22,16;)
(24,30500,1,2,0,16,22,23;)
(25,30500,1,2,0,16,23,17;)
(26,30500,1,2,0,19,24,25;)
```

(27, 30500, 1, 2, 0, 19, 25, 20;)(28,30500,1,2,0,20,25,26;) (29,30500,1,2,0,20,26,21;) (30, 30500, 1, 2, 0, 21, 26, 27;)(31,30500,1,2,0,21,27,22;) (32,30500,1,2,0,22,27,28;)(33,30500,1,2,0,22,28,23;) }//EndofBlock {constraint; (1, -1000;){constraintset; (1,"Untitled",0,0,0,1,0,0,0,24;) (28,0,1,1,3,3,3,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;) (19,0,1,3,1,3,1,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)) (13,0,1,3,1,3,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (2,0,1,3,1,3,1,0,0,0,000E+0,0,000E+0,0,000E+0,0,0000E+0,0,0000E+0,0,0000E+0;) (22,0,1,1,1,1,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;) (16,0,1,1,1,1,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (21,0,1,1,1,1,1,0,0,0,000E+0,0,000E+0,0,000E+0,0,000E+0,0,000E+0,0,000E+0;) (20,0,1,1,1,1,1,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (15,0,1,1,1,1,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (14,0,1,1,1,1,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (3,0,1,1,1,1,1,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (5,0,1,1,1,1,1,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (9,0,1,1,1,1,1,0,0,0,000E+0,0,000E+0,0,000E+0,0,000E+0,0,000E+0,0,000E+0;) (24,0,1,3,3,3,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;) (27,0,1,1,3,3,1,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (26,0,1,1,3,3,1,0,0,0,000E+0,0,000E+0,0,000E+0,0,000E+0,0,0000E+0,0,0000E+0;) (25,0,1,1,3,3,1,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (23,0,1,1,3,1,3,0,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (17,0,1,1,3,1,3,0,0,0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (11,0,1,1,3,1,3,0,0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0;)) (12,0,3,1,3,1,3,0,0,0,000E+0,0,000E+0,0,000E+0,0,0000E+0,0,0000E+0,0,0000E+0;) (10,0,3,1,1,1,3,0,0,0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (8.0.3.1.1.1.3.0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0:) (4,0,3,1,1,1,3,0,0,0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) }//EndofBlock }//EndofBlock {load; (1;){loadset; (1,"load1",5;) (0.27.-1.2500000E+001.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.)(0,26,-1.2500000E+001,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;) (0,25,-1.2500000E+001,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)

```
(0,24,-6.2500E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(0,28,-6.2500E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
 }//EndofBlock
 }//EndofBlock
 {thermal;
(0;)
 }//EndofBlock
{material;
(1;)
(1,"material",1,
1.1064270E+004,3.000000E-
001,1.0000E+0,1.0000E+0,4.2555000E+003,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.00000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000
0.0000E+0:)
}//EndofBlock
{geometryprop;
(2;)
(1,"jihe", 1, 0.0000E+0, 0.0000E+0, 0.0000E+0;)
(2,"jihe",2,1.0000E+0,1.0000E+0;)
 }//EndofBlock
 {additionprop;
(0;)
}//EndofBlock
{group;
(0;)
}//EndofBlock
{function;
(0;)
 }//EndofBlock
{nodemass;
(0:)
 }//EndofBlock
{coordsys;
(0;)
 }//EndofBlock
```

```
控制数据文件内容为
```

{Header;//Headerblock. ("";2.00;0;) }

{Control;

(//Analysisjobcontrol.
1,//Staticanalysisflag.
0,//FrequencyAnalysisflag.
0,//DyanmicRespondflag.
0,//BaseAccelerationflag.
0,//HarmonicExcitingflag.
0,//ThermalAnalysisflag.
1,//BulkingAnalysisflag.
0,//ContactAnalysisflag.
0,//ElasticPlasticAnalysisflag.
0,//OptimalAnalysisflag.
1,//ActiveConstraintID.
0,0;

0,

- 0,// 保留 0,// 保留
- 0,// 保留 0,// 保留
- 0,// 保留

) ("null",//AnalysisBankFile. "null",//AnalysisStructureFile.
```
"null",//AnalysisOptimalFile.
"null",//AnalysisReserverdFiles.
"null",//AnalysisReserverdFiles.
"null"//AnalysisGraphicsFiles.
)
(2)//ControlSetNumber.
{ControlSet;//StaticAnalysisBlock.
(1,"(null)",1)
(1,"LoadCase1",1,
1,1.00000E+0
)
}
{ControlSet;//buckleAnalysisBlock.
(2,"(null)",1)
(1,"LoadCase1",1,0.001)
}//EndofControlBLock.
```

```
计算结果中,临界压力系数为4.007565,与解析解4.0 接近。
```

10 结构频率响应分析

10.1 结构频率响应分析功能

JFX-FEA 系统可对结构承受基础简谐加速度作用和节点简谐激励作用的问题求解频率响应。

JFX-FEA 系统采用振型迭加算法对这类问题进行求解,其中参与计算的振型的阶数就 是自振分析中求得的振型阶数。

显然,*只能在自振分析的基础上进行该项分析*。

节点简谐激励作用下结构响应分析完成后,除了在图形数据文件中给出结构的稳态位 移幅值、稳态应力幅值数据外,在 hamdpl.res 结果文件中给出了各工况下结构节点的稳态 位移幅值结果及所有工况下的结构节点的稳态位移幅值的平方和开平方结果。在 hamfrc.res 结果文件中给出了各工况下结构节点的稳态内力应力幅值结果及所有工况下的结构节点的 稳态内力/应力幅值的平方和开平方结果。

基础加速度作用下结构响应分析完成后,除了在图形数据文件中给出结构的稳态加速 度幅值、稳态应力幅值数据外,在 hamdpl.res 结果文件中给出了各工况下结构节点的稳态 加速度幅值结果及所有工况下的结构节点的稳态加速度幅值的平方和开平方结果。在 hamfrc.res 结果文件中给出了各工况下结构节点的稳态内力/应力幅值结果及所有工况下的 结构节点的稳态内力/应力幅值的平方和开平方结果。

10.2 结构频率响应分析数据文件格式

对于结构频率响应分析,激振输入有两种形式:基础加速度作用和简谐节点激振力作用。对不同的激励形式,数据文件的内容有所不同,下面分别进行说明。

1激励为节点简谐力时数据文件格式

进行简谐力激励分析需填写自振分析和简谐力激励分析控制数据块,控制数据集类型为5,具体格式如下:

记录 No.	字段	描述	类型
1	ICSF	余弦/正弦指示数;	整型数
1	No. 字段 描述 ICSF 余弦/正弦指 LDCS 工况数	工况数	整型数

ControlSetData(Type=5,节点简谐力响应分析)

	NI		项数	整型数
2	Frequencies[LDCS]		频率序列(按工况 序号排列)	实型数
3	ITDP		阻尼输入标志	整型数
4	DampData		阻尼数据	实型数
	LoadSetID 荷载集标识	荷载集标识	整型数	
5	I~ NI	I~ IDCoefficient 荷载集调用系数对	整型数	
	111		频率的函数 ID	

其中, 各参数意义如下:

ICSF—— 填1表示激励为余弦形式,填2表示激励为正弦形式;

LDCS—— 工况数,每一个工况中荷载都是具有某一指定频率的简谐激励;

NI—— 项数,在分析时指定调用的荷载集数目;

Frequencies—— 各工况荷载对应的频率序列,单位为 Hz;

ITDP—— 阻尼类型;

DampData—— 阻尼数据,按不同阻尼类型分别具有不同形式。对于结构阻尼数据的输入,其具体的格式有如下三种:

(1) 以瑞雷阻尼系数 α, β 给出结构的阻尼

阻尼输入方式标志为 ITDP=1,结构阻尼数据的格式为

 $\alpha, \beta;$

其中, α, β 分别为质量矩阵和刚度矩阵的系数。

(2) 以各阶模态的阻尼比形式给出结构的比例阻尼 阻尼输入方式标志为 ITDP=2,结构阻尼数据的格式为 ξ1,ξ2,...,ξnpair,

其中, npair 为自振分析时指定求解的频率阶数。

(3) 以频率阻尼关系曲线的形式给出结构的比例阻尼 阻尼输入方式标志为 ITDP=3,结构阻尼数据的格式为 m 个阻尼曲线离散点的频率值数据; m 个阻尼曲线离散点的阻尼值数据;

即其具体的格式为

 $\theta 1, \theta 2, \dots, \theta m;$

ξ1,ξ2,...,ξm,

其中, m 为频率一阻尼关系曲线上离散点数据的个数,并且频率的单位为 Hz。

分析程序将根据频率一阻尼曲线离散点的频率值和对应阻尼值数据进行插值,求得各 工况对应频率下结构的比例阻尼。需要注意的是,由于分析程序采用内插法对阻尼进行插 值,因此必须保证所给出的频率一阻尼关系曲线的频率范围覆盖了所有工况的激励频率。

LoadSetID—— 形成荷载时所需调用的荷载集的 ID;

IDCoefficient—— 各荷载集调用系数对激励频率的函数 ID。该函数 X 值表示频率 值,单位为 Hz,Y 值表示荷载集调用系数。必须保证该函数所给出的频率范围覆盖了所有 工况的激励频率。

[例子]

```
{ControlSet;//HarmonicExcitingAnalysisBlock.
(5,"(null)",5)
(1,1,1)
(50.0,)//Frequencyseries
(2)//DampFlag
(0.06,0.06,0.06,0.06,0.06,)//Dampdata
(2,1.0)
}
```

2 激励为基础加速度时数据文件格式

进行基础加速度分析需填写自振分析和基础加速度分析控制数据块,控制数据集类型 为 6,具体格式如下:

	字段	描述	类型
	ICSF	余弦/正弦指示数;	整型数
1	LDCS	工况数	整型数
	NI	项数	整型数

2	Frequencies[LDCS]		频率序列(按工况序号排	实型数
			列)	
3	ITDP		阻尼输入标志	整型数
4	DampData		阻尼数据	实型数
	1	LoadSetID	荷载(加速度)模式标识	整型数
5	I~ NI	IDCoefficient	加速度荷载模式调用系数	整型数
	141		对频率的函数 ID	

其中,各参数意义如下:

ICSF—— 填1表示激励为余弦形式,填2表示激励为正弦形式;

LDCS—— 工况数,每一个工况中荷载都是具有某一指定频率的基础振动激

励;

NI—— 项数,在分析时指定调用的荷载集数目;

Frequencies—— 各工况基础振动的频率序列,单位为Hz;

ITDP—— 阻尼类型;

DampData—— 阻尼数据,按不同阻尼类型分别具有不同形式。对于结构阻尼数据的输入,其具体的格式有如下三种:

(1) 以瑞雷阻尼系数 α, β 给出结构的阻尼

阻尼输入方式标志为 ITDP=1,结构阻尼数据的格式为

 $\alpha, \beta;$

其中, α , β 分别为质量矩阵和刚度矩阵的系数。

(2) 以各阶模态的阻尼比形式给出结构的比例阻尼

阻尼输入方式标志为 ITDP=2,结构阻尼数据的格式为

ξ1,ξ2,...,ξnpair,

其中, npair 为自振分析时指定求解的频率阶数。

(3) 以频率阻尼关系曲线的形式给出结构的比例阻尼 阻尼输入方式标志为 ITDP=3,结构阻尼数据的格式为 m 个阻尼曲线离散点的频率值数据; m 个阻尼曲线离散点的阻尼值数据;

即其具体的格式为

θ1,θ2,...,θm;

ξ1,ξ2,...,ξm,

其中, m 为频率一阻尼关系曲线上离散点数据的个数,并且频率的单位为 HZ。

分析程序将根据频率一阻尼曲线离散点的频率值和对应阻尼值数据进行插值,求得各 工况对应频率下结构的比例阻尼。需要注意的是,由于分析程序采用内插法对阻尼进行插 值,因此必须保证所给出的频率一阻尼关系曲线的频率范围覆盖了所有工况基础振动的频 率。

LoadSetID—— 形成荷载时所需调用的荷载集的 ID;

IDCoefficient—— 各加速度荷载模式调用系数对频率的函数 ID。该函数 X 值表示频率值,单位为 Hz,Y 值表示荷载集调用系数。必须保证该函数所给出的频率范围覆盖了所有工况的基础振动频率。

[例子]

{ControlSet;//basevibrationAnalysisBlock. (6,"(null)",5) (1,1,1) (50.0,)//Frequencyseries (2)//DampFlag (0.06,0.06,0.06,0.06,0.06,)//Dampdata (2,1) }

10.3 结构频率响应算例

1. 悬臂梁简谐振动响应计算

悬臂梁结构几何模型为图 10.1 所示。

图 10.1

图 10.1 所示结构中,梁端沿 Z 方向作用一单位正弦形式的简谐激振力,频率为 50Hz。结构各阶主振动的阻尼比为 0.06,材料常数为 E=1.0×106Pa,ρ=8.333×104kg/m3。

将结构划分为20段梁单元进行计算。

结构模型数据文件内容为

{ header; ("Modeldatebase",2.0,1;) }//EndofBlock {node; (21;)(21,1.000000E+001,0.0000E+0,0.0000E+0,3;)(20,9.5000E+0,0.0000E+0,0.0000E+0,3;) (19,9.0000E+0,0.0000E+0,0.0000E+0,3;)(18,8.5000E+0,0.0000E+0,0.0000E+0,3;) (17,8.0000E+0,0.0000E+0,0.0000E+0,3;) (16,7.5000E+0,0.0000E+0,0.0000E+0,3;)(15,7.0000E+0,0.0000E+0,0.0000E+0,3;) (14,6.5000E+0,0.0000E+0,0.0000E+0,3;) (13,6.0000E+0,0.0000E+0,0.0000E+0,3;)(12.5.5000E+0.0.0000E+0.0.0000E+0.3;)(11,5.0000E+0,0.0000E+0,0.0000E+0,3;)(10,4.5000E+0,0.0000E+0,0.0000E+0,3;) (9,4.0000E+0,0.0000E+0,0.0000E+0,3;) (8,3.5000E+0,0.0000E+0,0.0000E+0,3;) (7,3.0000E+0,0.0000E+0,0.0000E+0,3;)(6,2.5000E+0,0.0000E+0,0.0000E+0,3;) (5,2.0000E+0,0.0000E+0,0.0000E+0,3;) (4,1.5000E+0,0.0000E+0,0.0000E+0,3;)(3,1.0000E+0,0.0000E+0,0.0000E+0,3;) (2,5.000000E-001,0.0000E+0,0.0000E+0,3;)

```
(1,0.0000E+0,0.0000E+0,0.0000E+0,3;)
}//EndofBlock
{element;
(20:)
(1,20100,1,1,1,1,2;)
(2,20100,1,1,2,2,3;)
(3,20100,1,1,3,3,4;)
(4,20100,1,1,4,4,5;)
(5,20100,1,1,5,5,6;)
(6,20100,1,1,6,6,7;)
(7,20100,1,1,7,7,8;)
(8,20100,1,1,8,8,9;)
(9,20100,1,1,9,9,10;)
(10, 20100, 1, 1, 10, 10, 11;)
(11,20100,1,1,11,11,12;)
(12,20100,1,1,12,12,13;)
(13,20100,1,1,13,13,14;)
(14, 20100, 1, 1, 14, 14, 15;)
(15,20100,1,1,15,15,16;)
(16,20100,1,1,16,16,17;)
(17, 20100, 1, 1, 17, 17, 18;)
(18,20100,1,1,18,18,19;)
(19,20100,1,1,19,19,20;)
(20, 20100, 1, 1, 20, 20, 21;)
}//EndofBlock
{constraint;
(1, -1000;)
{constraintset;
(1,"Untitled",0,1,1,1,1,1,1,1;)
(1,0,3,3,3,3,3,0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
}//EndofBlock
}//EndofBlock
{load;
(1;)
{loadset;
(2,"Untitled",20;)
(1,20,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,21,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,11,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,12,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,13,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,14,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,15,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,16,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,17,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
```

```
(1,18,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,19,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,3,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1.4.0.0000E+0.0.0000E+0.1.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.)
(1,5,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,6,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1.7, 0.0000E+0, 0.0000E+0, 1.0000E+0, 0.0000E+0, 0.0000E+0, 0.0000E+0;)
(1,8,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,9,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,10,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
(1,2,0.0000E+0,0.0000E+0,1.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0;)
 }//EndofBlock
 }//EndofBlock
 {thermal;
(0;)
 }//EndofBlock
{material;
(1;)
(1,"Untitled",1,
 1.0000000E+006,3.0000000E-001,8.3330000E-
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+00
00E+0,0.0000E+0,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+00
00E+0,0.0000E+0,
00E+0,0.0000E+0,
0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+0.0000E+00
00E+0,0.0000E+0;)
}//EndofBlock
{geometryprop;
(1;)
(1,"Untitled",4.0.0000E+0,1.2000E+0,1.0000000E-001,1.4400000E-001,2.1245902E-
001,1.0000E+0,1.0000E+0,0,2.0000000E-001,2.4000000E-001,2.0000000E-001,2.4000000E-
001.0.0000E+0.0.0000E+0.0.0000E+0.2.1.0000E+0.1.2000E+0.5.0000000E-001.6.0000000E-
001,0.0000E+0;)
 }//EndofBlock
{additionprop:
(20;)
(1,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1
.5707963E+000,0.0000E+0;)
(2,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000,1
.5707963E+000.0.0000E+0;)
(3,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000,1
.5707963E+000,0.0000E+0;)
```

(4,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (5,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000.0.0000E+0:) (6,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000.0.0000E+0:) (7,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000,1 .5707963E+000,0.0000E+0;) (8,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (9,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000,1 .5707963E+000,0.0000E+0;) (10,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000, 1.5707963E+000,0.0000E+0;) (11,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (12,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000.0.0000E+0:) (13,"A",1,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,0,0000E+0,1,5707963E+000, 1.5707963E+000,0.0000E+0;) (14,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (15,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (16,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000, 0.0000E+0;) (17,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (18,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (19,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000,0.0000E+0;) (20,"A",1,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,0.0000E+0,1.5707963E+000, 1.5707963E+000, 0.0000E+0;) }//EndofBlock {group; (0;)}//EndofBlock {function; (1;)(1,"1",0,2;1,10.000000,1.000000; 2,8000.0000000,1.0000000;) }//EndofBlock

{nodemass; (0;)}//EndofBlock {coordsys; (0;)}//EndofBlock 控制数据文件内容为 {Header;//Headerblock. ("";2.00;0;) } {Control; (//Analysisjobcontrol. 1,//Staticanalysisflag. 1,//FrequencyAnalysisflag. 0,//DyanmicRespondflag. 1,//BaseAccelerationflag. 0,//HarmonicExcitingflag. 0,//ThermalAnalysisflag. 0,//BulkingAnalysisflag. 0,//ContactAnalysisflag. 0,//ElasticPlasticAnalysisflag. 0,//OptimalAnalysisflag. 1;//ActiveConstraintID. 0:0; 0,// 保留 0.// 保留 0,// 保留

```
0,// 保留
    0,// 保留
    0.// 保留
)
(
"b",//AnalysisBankFile.
"e:\jfx.dos\debug\zxw2.unv",//AnalysisStructureFile.
"null",//AnalysisOptimalFile.
"null",//AnalysisReserverdFiles.
"null",//AnalysisReserverdFiles.
"feg"//AnalysisGraphicsFiles.
)
(3)//ControlSetNumber.
{ControlSet;//StaticAnalysisBlock.
(1,"(null)",1)
(1,"LoadCase1",1,
2,1.00000E+0
)
}
{ControlSet;//FrequencyAnalysisBlock.
(3,"(null)",1)
(0.00000E+0,6,0.00000E+0,1.00000000E-003,1.00000E+0)
}
{ControlSet;//HarmonicExcitingAnalysisBlock.
    (5,"(null)",5)
(2,1,1)
(50.0,)//Frequencyseries
              )//DampFlag
    (2
    (0.06,0.06,0.06,0.06,0.06,0.06,)//Dampdata
(2,1)//load-ID
}
}//EndofControlBLock.
```

计算结果中,梁端点处稳态位移幅值为0.014977m,与解析解0.014265m 接近。

2. 悬臂梁基础加速度运动响应计算

悬臂梁结构几何模型如图 10.1 所示。

图 10.1 所示结构中,基础在 Z 方向作用一以余弦形式变化的加速度,频率为 50Hz。结构各阶主振动的阻尼比为 0.06,材料常数为 $E=1.0\times10^6$ Pa, $\rho=8.333\times10^4$ kg/m³。

将结构划分为20段梁单元进行计算。

结构模型数据文件内容与上例相同。 控制数据文件内容为 {Header;//Headerblock. ("";2.00;0;) } {Control; (//Analysisjobcontrol. 1,//Staticanalysisflag. 1,//FrequencyAnalysisflag. 0,//DyanmicRespondflag. 1,//BaseAccelerationflag. 0,//HarmonicExcitingflag. 0,//ThermalAnalysisflag. 0,//BulkingAnalysisflag. 0,//ContactAnalysisflag. 0,//ElasticPlasticAnalysisflag. 0,//OptimalAnalysisflag. 1;//ActiveConstraintID. 0;0;) ("b",//AnalysisBankFile. "e:\jfx.dos\debug\zxw2.unv",//AnalysisStructureFile. "null",//AnalysisOptimalFile. "null",//AnalysisReserverdFiles. "null",//AnalysisReserverdFiles. "feg"//AnalysisGraphicsFiles.) (3)//ControlSetNumber. {ControlSet;//StaticAnalysisBlock. (1,"(null)",1) (1,"LoadCase1",1, 2,1.00000E+0) {ControlSet;//FrequencyAnalysisBlock.

(3,"(null)",1) (0.00000E+0,6,0.00000E+0,1.0000000E-003,1.00000E+0) } {ControlSet;//HarmonicExcitingAnalysisBlock. (6,"(null)",5) (1,1,1) (50.0,)//Frequencyseries (2)//DampFlag (0.06,0.06,0.06,0.06,0.06,)//Dampdata (2,1)//load-ID } }//EndofControlBLock.

计算结果中,梁端点处稳态加速度幅值为 6.0310m/s²,与解析解 6.2125m/s²接近。

11 结构时程响应分析

11.1 结构时程响应分析功能

本系统可对结构承受动荷载时的时程响应进行分析。在分析时假定初始位移、速度、加速度均为零。

结构时程响应分析完成后,除了在图形数据文件中给出结构的动位移、动应力数据 外,在 dyn.res 结果文件中还给出了各自由度在各时间步中的位移、速度和加速度响应结 果。通过在程序运行过程中以交互方式指定某一节点的某一个自由度,还在 dyn.gra 结果 文件中给出了该自由度位移响应随时间变化的数据。利用 dyn.gra 文件中的结果,可以采 用其他绘图软件(如 Microsoft Exel, Microsoft Word, Harvard Graph 等)作出对应自由度位 移响应随时间变化的曲线。

11.2 结构时程响应分析数据文件格式

对于结构时程响应分析,需要填写结构时程响应分析控制数据块,控制数据集类型为 4,具体格式如下:

记录	字段	描述	类型
	CaseID	工况标识	整型数
	Description	工况描述	字符串
	NSTEP	时间步数	整型数
	DLT	时间步长	实型数
	DAMP1	瑞雷阻尼系数α(刚 度阵系数)	实型数
1~LDCS	DAMP2	瑞雷阻尼系数β (质量阵系数)	实型数
	BETA	Newmark 法中的系 数,一般为 0.25	实型数
	GAMA	Newmark 法中的系 数,一般为 0.5	实型数
	NI	项数	整型数

		LoadSetID	荷载集标识	整型数
	1~ NI	IDCoefficient	荷载调用系数对时 间的函数 ID (函数	整型数
			中 X 值表示时刻)	

对动力时域分析,限制 LDCS=1.

各参数意义如下。

CaseID—— 时程响应分析工况标识符;

Description—— 时程响应分析工况描述;

NSTEP—— 时程响应分析求解的时间步总数;

DLT—— 时程响应分析求解的步长;

DAMP1—— 瑞雷阻尼系数 α 即刚度阵系数;

DAMP2—— 瑞雷阻尼系数 β 即质量阵系数;

BETA,GAMA—— Newmark 法中的系数,一般 BETA 为 0.25, GAMA 为 0.5(对于该组 取值, Newmark 法积分格式为无条件稳定格式);

NI—— 项数,在分析时指定调用的荷载集数目;

IDCoefficient—— 荷载调用系数对时间的函数 ID,该函数中 X 值表示时刻, Y 值表示在相应时刻对应荷载集的调用系数。

[例子]

```
{Header;//Headerblock.
("Modeldatebase";2.00;0;)
}
```

{Control; (//Analysisjobcontrol. 1,//Staticanalysisflag. 1,//FrequencyAnalysisflag. 1,//DyanmicRespondflag. 0,//BaseAccelerationflag. 0,//HarmonicExcitingflag. 0,//ThermalAnalysisflag. 0,//BulkingAnalysisflag. 0,//ContactAnalysisflag.

```
0,//ElasticPlasticAnalysisflag.
0,//OptimalAnalysisflag.
     1;//ActiveConstraintID.
    0:
    0;
)
(
"D:\Acad14\jifex95\zxw\2\2.bnk",//AnalysisBankFile.
"D:\Acad14\jifex95\zxw\2\2.unv",//AnalysisStructureFile.
"D:\Acad14\jifex95\zxw\2\0.opt",//AnalysisOptimalFile.
"null",//AnalysisReserverdFiles.
"null",//AnalysisReserverdFiles.
"D:\Acad14\jifex95\zxw\2\2.feg"//AnalysisGraphicsFiles.
)
(3)//ControlSetNumber.
{ControlSet;//StaticAnalysisBlock.
(1,"(null)",1)
(1,"LoadCase1",1,1,1.0000000E+000
)
}
{ControlSet;//FrequencyAnalysisBlock.
(3,"(null)",1)
(0.0000000E+000,3,0.0000000E+000,1.0000000E-003,1.0000000E+000)
{ControlSet;//DynamicAnalysisBlock.
(4,"(null)",1)
(1,"LoadCase1",400,7.8500000E-003,0.0000000E+000,0.0000000E+000,2.50000000E-
001,5.0000000E-001,1,
1,1
)
```

}//EndofControlBLock.

11.3 结构时程响应算例

结构几何模型为图 11.1 所示。

图 11.1

图 11.1 所示结构中,杆长 L=1.0m,截面积 A=1.0m2 杆端有集中质量 m,沿 x 向受简谐 荷载 F(t)=98sin(20t)N。材料常数为 E=980.0Pa,p=0.0kg/m3。

分析时将原结构沿杆的轴向均匀离散为 10 个杆单元,计算 400 个时间步,时间步长为 0.00785s。

结构模型数据文件内容为

{header;

("Modeldatebase",2.0,1;)
}//EndofBlock
{node;
(11;)
(11,1.0000000E+000,0.0000000E+000,0.0000000E+000,3;)
(10,9.000000E-001,0.000000E+000,0.000000E+000,3;)
(9,8.000000E-001,0.000000E+000,0.000000E+000,3;)
(8,7.0000000E-001,0.0000000E+000,0.0000000E+000,3;)
(7,6.000000E-001,0.000000E+000,0.000000E+000,3;)
(6,5.0000000E-001,0.0000000E+000,0.0000000E+000,3;)
(5,4.000000E-001,0.000000E+000,0.000000E+000,3;)
(4,3.0000000E-001,0.0000000E+000,0.0000000E+000,3;)
(3,2.000000E-001,0.000000E+000,0.000000E+000,3;)
(2,1.000000E-001,0.000000E+000,0.000000E+000,3;)
(1,0.000000E+000,0.000000E+000,0.000000E+000,3;)
}//EndofBlock
{element;
(10;)
(1,20200,1,1,0,1,2;)
(2,20200,1,1,0,2,3;)
(3,20200,1,1,0,3,4;)
(4,20200,1,1,0,4,5;)
(5,20200,1,1,0,5,6;)
(6,20200,1,1,0,6,7;)
(7,20200,1,1,0,7,8;)

```
(8,20200,1,1,0,8,9;)
(9,20200,1,1,0,9,10;)
(10,20200,1,1,0,10,11;)
}//EndofBlock
{constraint;
(1, -1000;)
{constraintset;
(1,"Untitled",0,1,0,0,0,0,0,2;)
(11,0,1,3,3,3,3,3,0,0.0000000E+000,0.0000000E+000,0.0000000E+000.
                                                                    0.000000E+000,
0.000000E+000.0.000000E+000;)
(1,0,3,3,3,3,3,0,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.0000000E+000,0.00000
00E+000,0.0000000E+000;)
}//EndofBlock
}//EndofBlock
{load;
(1:)
{loadset;
(1,"Untitled",1;)
(0,11,1.000000E+000,0.000000E+000,0.000000E+000,0.0000000E+000,
0.000000E+000,0.000000E+000;)
}//EndofBlock
}//EndofBlock
{thermal;
(0;)
}//EndofBlock
{material;
(1;)
(1,"Untitled",1,
9.8000000E+002,0.0000000E+000,1.0000000E-003,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000.0.000000E+000.0.000000E+000.0.000000E+000.0.000000E+000.
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,0.000000E+000,
0.000000E+000,0.000000E+000;)
}//EndofBlock
{geometryprop;
(1:)
(1,"Untitled",1,1.0000000E+000,1.0000000E+000,0.0000000E+000;)
}//EndofBlock
{additionprop;
```

(0;)}//EndofBlock {group; (0:)}//EndofBlock {function; (1;)(1,"Untitled",0,400; 0,0.000000,0.000000; 1,0.007850,15.322870; 2,0.015700,30.268821; 3,0.023550,44.470207; 4,0.031400,57.577698; 5,0.039250,69.268868;(限于篇幅,此处省略第 6-387 点的函数值描述) 388, 3.045800, -92.223513; 389, 3.053650, -96.272199; 390, 3.061500, -97.952742; 391,3.069350,-97.223803; 392, 3.077200, -94.103313; 393,3.085050,-88.668032; 394,3.092900,-81.051657; 395,3.100750,-71.441541; 396,3.108600,-60.074076; 397,3.116450,-47.228884; 398, 3.124300, -33.221937; 399,3.132150,-18.397783;) }//EndofBlock {nodemass; (1;)(1,11,9.800000E+000;) }//EndofBlock {coordsys; (0;)}//EndofBlock 控制数据文件内容为 {Header;//Headerblock. ("Modeldatebase";2.00;0;) } {Control; (//Analysisjobcontrol. 1,//Staticanalysisflag.

1,//FrequencyAnalysisflag.

1,//DyanmicRespondflag.

0,//BaseAccelerationflag.

0,//HarmonicExcitingflag.

0,//ThermalAnalysisflag.

0,//BulkingAnalysisflag.

0,//ContactAnalysisflag.

0,//ElasticPlasticAnalysisflag.

0,//OptimalAnalysisflag.

1;//ActiveConstraintID.

0;

0;

0,// 保留

0,// 保留

0,// 保留

- 0,// 保留
- 0,// 保留
- 0,// 保留
- 0,// 保留
- 0,// 保留 0,// 保留
- 0,// 保留

)

(

"D:\Acad14\jifex95\zxw\2\2.bnk",//AnalysisBankFile.

 $"D:\Acad14\jifex95\zxw\2\2.unv",//AnalysisStructureFile.$

"D:\Acad14\jifex95\zxw\2\2.opt",//AnalysisOptimalFile.

"null",//AnalysisReserverdFiles.

"null",//AnalysisReserverdFiles.

 $"D:\Acad14\jifex95\zxw\2\2.feg"//AnalysisGraphicsFiles.$

)

(3)//ControlSetNumber.

```
{ControlSet;//StaticAnalysisBlock.
(1,"(null)",1)
(1,"LoadCase1",1,
1,1.0000000E+000
)
}
{ControlSet;//FrequencyAnalysisBlock.
(3,"(null)",1)
(0.0000000E+000,3,0.0000000E+000,1.0000000E-003,1.0000000E+000)
}
{ControlSet;//DynamicAnalysisBlock.
(4,"(null)",1)
(1,"LoadCase1",400,7.85000000E-003,0.00000000E+000,0.00000000E+000,2.50000000E-
001,5.0000000E-001,1,
1,1
)
}
}//EndofControlBLock.
```

12 轴对称结构分析

进行轴对称结构分析需填写轴对称结构分析控制数据块,控制数据集类型为 8,具体 格式如下:

记录	字段	描述	类型
	NFourierTerm	荷载傅立叶级数项数	整型数
1	NCircumDividing	圆周向分割数	整型数
1	NoCirSection	应力修匀时圆周段编	整型数
		号	

对于轴对称旋转壳和旋转体结构,节点 r 坐标与普通结构中 x 坐标相对应,节点 θ 坐标在名义上与普通结构中 y 坐标相对应,但实际上对环体单元来说, θ 坐标无意义,而对于旋转壳单元来说,应将节点的 φ 值填在此处。各节点坐标意义如图,坐标数据输入详见本手册关于节点坐标数据格式部分。

13 地震响应分析

进行地震响应分析需填写自振分析和地震响应分析控制数据块。地震响应分析控制数 据集类型为9,具体格式如下:

记录	字段		描述	类型
	Method		填 1, 表示用 SRSS 法	整型数
	Group		设计地震分组号	整型数
	Ksite		场地类别数	整型数
1	Dgr		地震烈度	整型数
Image: Dgi Dgi 地長次及 Stc 结构影响	结构影响系数	实型数		
	Ndir		地震方向个数	整型数
	1-Ndir	Beta	地震方向	整型数

其中,对于水平地震(xoy 平面内),Beta(地震方向)填写地震方向与 x 轴夹角,单位为 度;对于竖向(z向)地震,Beta(地震方向)填写-1。

地震响应节点位移结果输出文件为 Sesmic.res,单元内力结果输出文件为 sesmicfrc.res,梁单元截面内力结果输出文件为 ses_bm_frc.res。

14 温度场和热传导分析

进行温度场和热传导分析需填写相应控制数据块,控制数据集类型为7,具体格式如下:

稳态温度场分析的数据

记录 No.	字段	描述	类型
	STATE	=0,表示稳态	整型数
1		=0	整型数
	PHASECHANGE		

差分法求解瞬态温度场的数据

记录 No.	字段		描述	类型		
	STATE		=1,表示瞬态	整型数		
	METHOD		=1,表示差分法	整型数		
	ALPHA		时间差分系数	实型数		
1	NDT		时间段数	整型数		
1	1~NDT	Ν	时间步数	整型数		
		STEP	时间步长	实型数		
	PHASECHANGE		=0	整型数		

精细积分法求解瞬态温度场的数据

记录 No.	字段	描述	类型
	STATE	=1,表示瞬态	整型数
	METHOD	=2,表示精细积分法	整型数
	PROBLEMFLAG	=1,表示线性问题	整型数
1		或=2,表示辐射问题	
		或=3,表示物性参数可变问题(暂未实现)	
		或=4,表示物性参数可变与辐射问题(暂未 实现)	
	SUBDOMAINFLAG	=0,表示采用下三角计算指数矩阵	整型数

BANDWIDTH	=0	整型数
STEPS	时间步数	整型数
DELTA	时间步长	实型数
Ν	计算指数矩阵 2N 类算法的 N	整型数
EPS	误差允许值。若 PROBLEMFLAG>1, 供程序预测-校正使用	实型数
PHASECHANGE	=0	整型数

目前,本程序仅限于对由杆、平面四节点膜单元、八节点块体单元和四节点轴对称单元组成的结构进行热传导分析。

15 分析结果图形数据格式

分析结果图形数据格式中各数据块格式如下。

文件头数据块(关键字: header):

记录	字段	描述	类型
1	Title	数据库标题	字符串
	Version	文件格式版本号	实型数
	Туре	文件类型	整型数

文件类型为1。

1、静力位移数据块(关键字: STATICDISP):

记录	字段	描述	类型
1	LDCS	工况总数	整型数
	NW	节点总数	整型数
1~LDCS	STATICDISPSET	静力位移子块	

静力位移子块(关键字: STATICDISPSET):

记录	字段	描述	类型
1	IDLDCS	工况标识符	整型数
1	DISCRIPTION	工况描述	字符串
1-NW	ID	节点标识	整型数
	u	X 向位移	实型数
	v	Y 向位移	实型数
	W	Z向位移	实型数

2、自由振动模态数据块(关键字: EIGENMODE):

记录	字段	描述	类型
1	NPAIR	模态总数	整型数
	NW	节点总数	整型数
1~NPAIR	EIGENMODE SET	自由振动模态子块	

记录	字段	描述	类型
1	Ν	模态阶次	整型数
1	FREQ	频率(HZ)	实型数
1-NW	ID	节点标识	整型数
	u	X 向分量	实型数
	v	Y 向分量	实型数
	W	Z向分量	实型数

自由振动模态子块(关键字: EIGENMODESET):

3、屈曲模态数据块(关键字: BUCKLINGMODE):

记录	字段	描述	类型
1	NPAIR	模态总数	整型数
1	NW	节点总数	整型数
1~NPAIR	BUCKLINGMODE SET	屈曲模态子块	

屈曲模态子块(关键字: BUCKLINGMODESET):

记录	字段	描述	类型
	Ν	屈曲工况序号	整型数
1	DESCRIPTION	屈曲工况描述	字符串
1	FACTOR	屈曲荷载系数	实型数
	Number	屈曲模态序号	整型数
1-NW	ID	节点标识	整型数
	u	X 向分量(第一阶屈曲模态)	实型数
	v	Y 向分量(第一阶屈曲模态)	实型数
	W	Z向分量(第一阶屈曲模态)	实型数

4、节点静应力场数据块(关键字: STATICSTRS):

记录	字段	描述	类型
1	LDCS	工况总数	整型数
1	NW	节点总数	整型数
1~LDCS	STATICSTRSSET	节点静应力场子块	

记录	字段	描述	类型
	IDLDCS	工况标识符	整型数
1	DISCRIPTION	数据描述	字符串
1	SURFACE	单元局部坐标系表面指示数	整型数
1-NW	ID	节点标识	整型数
	σx	X 向正应力	实型数
	σу	Y 向正应力	实型数
	σz	Z向正应力	实型数
	τχγ	Z面剪应力	实型数
	τyz	X 面剪应力	实型数
	τzx	Y面剪应力	实型数

节点静应力场子块(关键字: STATICSTRSSET):

SURFACE=0 表示对应节点应力是块体元、膜单元处节点应力; SURFACE=1 表示对应节点应力是板、壳单元上表面(以局部坐标系为参照)处节点应力; SURFACE=2 表示对应节点应力是板、壳单元下表面(以局部坐标系为参照)处节点应力。

5、梁单元内力数据块(关键字: BEAMREACTION)

记录	字段	描述	类型
1	LDCS	工况总数	整型数
	NELE	列写内力的梁单元数	整型数
	NSECT	列写内力的梁截面数	整型数
1~LDCS	BEAMREACTIONSET	梁单元内力数据子块	

梁单元内力数据子块(关键字: BEAMREACTIONSET):

记录	字	段	描述	类型
	IDLDCS		工况标识符	整型数
1	DISCRI	PTION	数据描述	字符串
1-NELE	II)	单元标识	整型数
	NSECT	D	距左端距离	实型数
		N	轴向力	实型数
		Qy	Y 向剪力	实型数
		Qz	Z向剪力	实型数
		Tx	轴向扭矩	实型数

Му	Y 向弯矩	实型数
Mz	Z 向弯矩	实型数

其中,X,Y,Z方向是指梁单元局部坐标系方向。

6、频率响应位移数据块(关键字: FREQDISP):

记录	字段	描述	类型
1	LDCS	工况总数	整型数
1	NW	节点总数	整型数
1~LDCS	FREQDISPSET	频率响应位移子块	

频率响应位移子块(关键字: FREQDISPSET):

记录	字段	描述	类型
1	IDLDCS	工况序号	整型数
1	DISCRIPTION	数据描述	字符串
1-NW	ID	节点标识	整型数
	u	X 向位移	实型数
	v	Y 向位移	实型数
	W	Z向位移	实型数

7、频率响应应力场数据块(关键字: FREQSTRS):

记录	字段	描述	类型
1	LDCS	工况总数	整型数
	NW	节点总数	整型数
1~LDCS	FREQSTRSSET	节点.应力场子块	

频率响应应力场子块(关键字: FREQSTRSSET):

记录	字段	描述	类型
	IDLDCS	工况标识符	整型数
1	DISCRIPTION	数据描述	字符串
1	SURFACE	单元局部坐标系表面指示数	整型数
1-NW	ID	节点标识	整型数
	σx	X 向正应力	实型数
	σy	Y 向正应力	实型数
	σz	Z向正应力	实型数
	τχγ	Z面剪应力	实型数

	τyz	X 面剪应力	实型数
	τzx	Y面剪应力	实型数

SURFACE=0 表示对应节点应力是块体元、膜单元处节点应力; SURFACE=1 表示对应节点应力是板、壳单元上表面(以局部坐标系为参照)处节点应力; SURFACE=2 表示对应节点应力是板、壳单元下表面(以局部坐标系为参照)处节点应力。

8、时程响应位移数据块(关键字: TRANSIENTDISP):

记录	字段	描述	类型
1	LDCS	时间步总数	整型数
	NW	节点总数	整型数
1~LDCS	TRANSIENTDISP SET	时程响应位移子块	

时程响应位移子块(关键字: TRANSIENTDISP SET):

记录	字段	描述	类型
1	IDLDCS	时间步序号	整型数
1	DISCRIPTION	时间步描述	字符串
1-NW	ID	节点标识	整型数
	u	X 向位移	实型数
	v	Y向位移	实型数
	W	Z向位移	实型数

9、时程响应应力场数据块(关键字: TRANSIENTSTRS):

记录	字段	描述	类型
1	LDCS	数据组总数	整型数
	NW	节点总数	整型数
1~LDCS	TRANSIENTSTRSSET	节点.应力场子块	

时程响应应力场子块(关键字: TRANSIENTSTRSSET):

记录	字段	描述	类型
	IDLDCS	工况标识符	整型数
1	DISCRIPTION	数据描述	字符串

	SURFACE	单元局部坐标系表面指示数	整型数
1-NW	ID	节点标识	整型数
	σx	X 向正应力	实型数
	σу	Y向正应力	实型数
	σz	Z向正应力	实型数
	τχγ	Z面剪应力	实型数
	τyz	X 面剪应力	实型数
	τzx	Y面剪应力	实型数

SURFACE=0 表示对应节点应力是块体元、膜单元处节点应力; SURFACE=1 表示对应节点应力是板、壳单元上表面(以局部坐标系为参照)处节点应力; SURFACE=2 表示对应节点应力是板、壳单元下表面(以局部坐标系为参照)处节点应力。

10、瞬态温度场数据块(关键字: TEMPERATURE):

记录	字段	描述	类型
1	NSTEP	时刻总数	整型数
	NW	节点总数	整型数
1~NSTEP	TEMPERATURESET	节点温度值子块	

节点温度值子块(关键字: TEMPERATURESET):

记录	字段	描述	类型
1	STEP	时间步序号	整型数
	DISCRIPTION	描述	字符串
1-NW	ID	节点标识	整型数
	Т	节点温度值	实型数

16 出错信息

JFX-FEA 运行时常见出错信息及常见出错原因如下。

 \Box Can not open data file

无法打开输入数据文件,输入数据文件名或路径输入有误。

□ in open Graph data file 无法打开图形数据文件,图形数据文件名或路径输入有误。

□ Number of constraint_set records is 0 未定义约束集数据

□ Number of load_case records is 0 对应荷载集中荷载记录数据为零,即对应荷载集为空。

□ interpolation error, beyond the inteval 定义函数时数据点所包含区间小于调用函数时所需的数据区间,无法完成内插植。

□ No such kind of control data 控制数据关键字错误。

□ ID of material function undefined 材料性质引用函数未定义。

□ ID of layer thinkness function undefined 铺层厚度引用函数未定义。

□ ID of ply-angle function undefined 铺层角度引用函数未定义。

□ Singular element 单元性态奇异。

□ No Eigenfrequency analysis task defined 进行频率响应分析时未定义自振分析数据。

□ Write bank file failed 由于硬盘空间不足,向外存数据库写入数据错。

□ Warning: DOF=0 自由度数为零。

□ Warning: Ill-condition 总刚度阵病态或奇异。

□ Elemental nodes not in one plane 平面单元节点不共面。

□ Unauthorized user or DOG not in the parallel port 未授权用户或未插入检测卡。

索引

几何可动位移, 10, 39 分析结果图形数据,88 出口节点次序,24 出错信息,94 四元荷载,42 节点坐标, 6, 11, 20, 54 节点附加质量,44 节点温度值,92 记录,15 全局坐标系,11 自振分析, 54, 55, 65 拟优序,48 时程响应分析,77 材料,7,30 单元局部坐标系,24 单元类型, 6, 7, 21 单元属性, 7, 33, 34, 35 单位制.18.54 屈曲分析, 59, 60 指定位移,39 指定非零位移,10 指定零位移,10 独立位移, 10, 39 相关位移, 10, 39 热传导分析,86 荷载类型, 41, 42, 43, 50 荷载集, 50, 66, 67, 68 控制数据, 47, 48, 49, 52, 57 数据块,15 频率响应分析, 42, 65 截面模量,34 精细积分法.86 静力分析, 50, 59